BFS广度优先算法框架

BFS的核心思想,就是把一些问题抽象成图,从一个点开始向四周扩散。一般来说,我们写BFS算法都是用队列这种数据结构,每次将一个节点周围的所有节点加入队列。

BFS相对DFS最主要区别是:BFS找到的路径一定是最短的,但代价就是空间复杂度比DFS大很多。

BFS出现的常见场景,问题的本质就是在一幅图中找到起点start到终点target的最近距离。

记住下面这个框架就ok了:

//计算从起点start到终点target的最近距离
int BFS(Node start,Node target){
    Queue<Node> q;//核心数据
    Set<Node> visited;//避免走回头路
    q.offer(start);//将起点加入队列
    visited.add(start);
    int step = 0;//记录扩散的步数
    while(q not empty) {
        int sz = q.size();
        /*将队列中所有节点向四周扩散*/
        for(int i=0;i<sz;i++) {
            Node cur = q.poll();
            //判断是否到达终点
            if(cur is target){
                return step;
            }
            /*将cur相邻的节点加入队列*/
            for(Node x : cur.adj()) {
                if (x not in visited) {
                    q.offer(x);
                    visited(x);
                }
            }
        }
        //更新步数
        step++;
    }
    return step;
}

队列 q 就不说了,BFS 的核⼼数据结构; cur.adj() 泛指 cur 相邻的节 点,⽐如说⼆维数组中, cur 上下左右四⾯的位置就是相邻节 点; visited 的主要作⽤是防⽌⾛回头路,⼤部分时候都是必须的,但是 像⼀般的⼆叉树结构,没有⼦节点到⽗节点的指针,不会⾛回头路就不需要 visited 。

本演示程序中,要求以邻接表作为图的存储结构。图中顶点数据类型为字符型,在提示信息下由用户输入。边的信息由用户输入弧头和弧尾元素。<br><br><br>为实现上述程序功能,以线性链表表示集合。为此,需要两个抽象数据类型:线性表和集合。<br>1. 线性表的抽象数据类型定义为:<br> ADT ALGraph{<br> 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。<br> 数据关系R1:R={VR}<br>VR={<v,w>|v,w V且P(v,w),<v,w>表示从v到w的弧,为此P(v,w)定义了弧<v,w> 的意义或信息}<br> 基本操作P: <br>void CreateAdjList(ALGraph& G)<br> 操作结果:根据相应的提示信息构造一个图。<br> int LocateVex(&G,char u)<br> 初始条件:图G存在,u和G中顶点有相同特征。<br> 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回-1。<br>int FirstAdjVex(ALGraph G,int v)<br> 初始条件:图G存在,v是G中某个顶点。<br> 操作结果:返回v第一个邻接顶点。若v在G中没有邻接顶点,返回-1。<br>int NextAdjVex(ALGraph G,int v,int w)<br> 初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。<br> 操作结果:返回v的(相对于w的)第一个邻接顶点。若不存在,返回-1。<br>void DFS(ALGraph &G,int v)<br> 初始条件:图G存在。<br> 操作结果:从顶点v出发,对图进行深度优先遍历。<br>void DFSTraverse(ALGraph *G)<br> 初始条件:图G存在。<br> 操作结果:对图进行深度优先遍历。<br>void BFSTraverse(ALGraph *G)<br> 初始条件:图G存在。<br> 操作结果:对图进行广度优先遍历。<br> }ADT ALGraph<br>2. 队列的抽象数据类型定义为:<br> ADT Queue{<br> 数据对象D:D={ | QNodeSet,i=1,2,…,n,n 0 }<br> 数据关系R2:R2={< , >| , D1, i=2,…,n}<br> 约定其中 端为队列头, 为队列尾<br> 基本操作P:<br> InitQueue (*Q)<br> 操作结果:构造一个空队列Q<br> EnQueue (*Q,e)<br> 初始条件:队列Q已存在<br> 操作结果:插入元素e为Q的新的队尾元素<br> DeQueue (*Q)<br> 初始条件:Q为非空队列<br> 操作结果:删除Q的队头元素,并返回其值<br> QueueEmpty (*Q)<br> 操作结果:队为空,则返回0;否则,返回1<br> }ADT Queue<br><br><br>图的基本操作设置如下:<br>void CreateAdjList(ALGraph& G) //构建图<br>int LocateVex(ALGraph &G,char u) //返回u在G中的位置<br>int FirstAdjVex(ALGraph G,int v) //返回v的第一个邻接节点<br>int NextAdjVex(ALGraph G,int v,int w) //返回v的相对w的下一个邻接节点<br>void DFS(ALGraph &G,int v) //从顶点v开始深度优先遍历图<br>void DFSTraverse(ALGraph *G) //深度优先遍历图<br>void BFSTraverse(ALGraph *G) //广度优先遍历图<br><br>队列的基本操作设置如下:(具体操作上一次上机题中已经涉及,故此处不再详述)<br>void InitQueue(LinkQueue &Q) <br>void EnQueue(LinkQueue& Q,int e)<br>int DeQueue( LinkQueue& Q)<br>int QueueEmpty(Queue *Q)<br><br>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值