给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock
解法一:空间复杂度O(n)
class Solution {
public int maxProfit(int[] prices) {
/**
* k = 1;
* 二维数组 dp[i][2]表示第i天的两种状态
* dp[i][0] 表示 第i天手中不持有股票
* dp[i][1] 表示 第i天手中持有股票
*/
int n = prices.length;
int[][] dp = new int[n][2];
//状态转移方程
for (int i = 0;i < n;i++) {
//base case i = 0 时,i-1= -1
if (i - 1 == -1) {
//dp[0][0] = 0;
dp[i][0] = 0;
//dp[0][1] = -prices[i]
dp[i][1] = -prices[i];
//进入下一次循环
continue;
}
//第i天不持有股票,取max(第i-1天不持有股票,第i-1天持有股票+第i天股票售卖的价格)
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
/**
* 第i天持有股票,取max(第i-1天持有股票,第i-1天不持有股票-第i天股票买入的价格)
* 由于只允许买入一次股票,则第i天持有股票
* 取max(第i-1天持有股票, -第i天买入股票的价格);
*/
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
//目标返回 dp[n-1][0],最后一天不持有股票
return dp[n-1][0];
}
}
解法二:空间复杂度O(1)
class Solution {
public int maxProfit(int[] prices) {
/**
* k = 1;空间复杂度O(1),取最值
* 二维数组 dp[i][2]表示第i天的两种状态
* dp[i][0] 表示 第i天手中不持有股票
* dp[i][1] 表示 第i天手中持有股票
*/
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
//状态转移方程
for (int i = 0;i < n;i++) {
//第i天不持有股票,取max(第i-1天不持有股票,第i-1天持有股票+第i天股票售卖的价格)
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
/**
* 第i天持有股票,取max(第i-1天持有股票,第i-1天不持有股票-第i天股票买入的价格)
* 由于只允许买入一次股票,则第i天持有股票
* 取max(第i-1天持有股票, -第i天买入股票的价格);
*/
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
//目标返回 dp[n-1][0],最后一天不持有股票
return dp_i_0;
}
}
331

被折叠的 条评论
为什么被折叠?



