给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: prices = [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: prices = [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii
解法一:空间复杂度O(n)
class Solution {
public int maxProfit(int[] prices) {
//k为正无穷,则k,k-1是一样的
int n = prices.length;
/**
* dp[i][0] 表示第i天不持有股票
* dp[i][1] 表示第i天持有股票
*/
int[][] dp = new int[n][2];
for (int i = 0;i < n;i++) {
//base case:i = 0 时,i-1 == -1
if (i - 1 == -1) {
dp[i][0] = 0;
dp[i][1] = -prices[i];
continue;
}
//状态转移方程
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
}
//目标返回最后一天不持有股票的利润
return dp[n-1][0];
}
}
解法二:空间复杂度O(1)
class Solution {
public int maxProfit(int[] prices) {
//k为正无穷,则k,k-1是一样的
int n = prices.length;
/**
* dp[i][0] 表示第i天不持有股票
* dp[i][1] 表示第i天持有股票
*/
int dp_i_0 = 0;
int dp_i_1 = Integer.MIN_VALUE;
for (int i = 0;i < n;i++) {
//状态转移方程
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, dp_i_0 - prices[i]);
}
//目标返回最后一天不持有股票的利润
return dp_i_0;
}
}
1680

被折叠的 条评论
为什么被折叠?



