leetCode 188 买卖股票的最佳时机 IV(k=任意正整数)

该博客讨论了如何使用动态规划算法解决在有限交易次数(k)下,从给定的股票价格数组中获取最大利润的问题。提供了两种解法:当k小于等于100时,以及当k大于数组长度的一半时。每种解法都通过建立状态转移方程,计算每一天剩余交易次数和持有或不持有股票时的最大利润。
摘要由CSDN通过智能技术生成

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
 

提示:

0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000


来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv
解法一:如题k <=100时;

class Solution {
    public int maxProfit(int max_k, int[] prices) {
        int n = prices.length;
        if (n == 0) {
            return 0;
        }

        /**
         * k = 任意整数
         * dp[i][k][0]表示第i天剩余k次交易机会,不持有股票
         * dp[i][k][1]表示第i天剩余k次交易机会,持有股票
         */
        int[][][] dp = new int[n][max_k+1][2];
        for (int i = 0;i < n;i++) {
            for (int k = max_k;k >=1;k--) {
                //base case
                if (i - 1 == -1) {
                    dp[i][k][0] = 0;
                    dp[i][k][1] = -prices[i];
                    continue;
                }
                //状态转移方程
                dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
                dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
            }
        }
        
        return dp[n-1][max_k][0];
    }
}

解法二:K为任意整数(k > n/2)时,考虑内存使用问题(溢出)

class Solution {
    public int maxProfit(int max_k, int[] prices) {
        int n = prices.length;
        if (n == 0) {
            return 0;
        }
        if (max_k > n/2) {
            int[][] dp2 = new int[n][2];
            //若max_k > n/2,则交易次数k没有约束
            for (int i = 0;i < n;i++) {
                //base case
                if (i - 1 == -1) {
                    dp2[i][0] = 0;
                    dp2[i][1] = -prices[i];
                    continue;
                }
                //状态转移方程
                dp2[i][0] = Math.max(dp2[i-1][0], dp2[i-1][1] + prices[i]);
                dp2[i][1] = Math.max(dp2[i-1][1], dp2[i-1][0] - prices[i]);
            }
            return dp2[n-1][0];
        }

        /**
         * k = 任意整数
         * dp[i][k][0]表示第i天剩余k次交易机会,不持有股票
         * dp[i][k][1]表示第i天剩余k次交易机会,持有股票
         */
        int[][][] dp = new int[n][max_k+1][2];
        
        for (int i = 0;i < n;i++) {
            for (int k = max_k;k >=1;k--) {
                //base case
                if (i - 1 == -1) {
                    dp[i][k][0] = 0;
                    dp[i][k][1] = -prices[i];
                    continue;
                }
                //状态转移方程
                dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
                dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
            }
        }
        
        return dp[n-1][max_k][0];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值