链接:http://public.cranfield.ac.uk/c5354/teaching/dip/
Digital Image Processing : MSc Course
[ Textbooks ] [ Projects ] [ Jobs & Industrial Links ] [ Seminars ]
For details of how to apply to this MSc course option at Cranfield University please see the entry in the university prospectus. Alternatively this couse is now (from 2009 onwards) offered to external delegates as an professional development module.
Before emailing with a question - please check the module PAQ
Context
The Digital Image Processing component makes up part of the Digital Signal and Image Processing component of the MSc Computational and Software Techniques in Engineering taught by the Applied Mathematics and Computing Group in the School of Engineering.
Students are expected to have a working knowledge of C/C++ and have attended the prior signal processing and signal analysis components of the MSc course. External students from within Cranfield University are most welcome on the course but are requested to inform the course lecturer first. Relevant computing, mathematical and/or industrial experience is assumed for external students opting to take the course.
Course Syllabi
- Image Processing (IP) Module :
Expand Course Syllabus
Course Message: The most powerful method of sensing available to humans is vision. In computing visual information is represented as a digital image. In order to process visual information in computer systems we need to know about processing digital images. Here we focus upon the task of low-level visual processing.
Course Summary: Image Processing Essentials
Course Notes : [PDF] Example Exam Paper [PDF]
- Image Analysis (IA) Module:
Expand Course Syllabus
Course Message: Digital Image Processing allows us to process visual information in computer systems. By processing visual information we can develop automated visual interpretation and understanding – artificial vision, itself a large part of wider field of the Artificial Intelligence. In order to achieve this we must be able to extract high-level visual information such as edges and regions from images and additionally allow for the efficient storage of large amounts of visual data. Here we concentrate on mid-level visual interpretation and image compression.
Course Summary: 1) Mid-level vision : feature extraction & processing, 2) Image compression 3) Image de-blurring
Course Notes : [PDF] Lab Tutorials [Tut. 1] [Tut. 2] [Tut. 2 - shape sample] [Tut. 3] [Tut. 4]
- Applications of Digital Signal Processing & Computer Vision (Computer Vision Module component):
Expand Course Syllabus
Course Message: The low-level and mid-level visual understanding achievable using various digital image processing techniques allow us to tackle the Artificial Intelligence problem of artificial visual sensing – computer vision (also termed 'robot vision'). By developing these techniques further we can apply image processing to a number of different visual inspection and understanding tasks within the realm of science and engineering. Here we investigate applied digital image processing in the form of computer vision – the automated interpretation and understanding of visual information.
Course Summary: An introduction to computer vision applications
Course Notes : [PDF] Lab Tutorial [1] [Chessboard Target]
In line with Cranfield University policy access to copies of the course notes is restricted to members of the university and/or external students studying this course. These notes are handed out to course attendees. Please contact the course lecturer to gain access permission.
OpenCV Software
- OpenCV examples from the IP course notes.
- OpenCV lecture demos from IP, IA and App. CV lectures.
- OpenCV manual for the course OpenCV version.
- OpenCV VS 2010 Settings time-saving "copy and paste" file. (and earlier for version 2.3.1)
- OpenCV Source Code Repository - full library source code.
- OpenCV software (DIP course version) :
- OpenCV : [ MS Windows ]
(please use this version (2.4.2) - extract and move to C:\OpenCV2.4)
- TBB (also required): [ MS Windows ] (extract and move to C:\TBB40)
- Home/Personal use [ Linux ] (select correct version)
- OpenCV : [ MS Windows ]
C/C++ Programming & OpenCV Resources
- Re-producible Image Processing Research Algorithms - full explanation, reference & c/c++ code example
- The C Library Reference Guide by Eric Huss
- C++ Standard Library Reference Guide
- Standard Template Library Programmer's Guide
- The OpenCV home page - for general opencv support.
Mastering OpenCV with Practical Computer Vision Projects , Packt Publishing, Limited, 2012.[Full Supporting Source Code](recommended: advanced OpenCV project support/examples inc. iOS and Android examples)[Amazon - UK FR] [bib] | |
OpenCV 2 Computer Vision Application Programming Cookbook , Packt Pub Limited, 2011.(recommended: for OpenCV support)[Amazon - UK FR] [bib] | |
Learning OpenCV: Computer Vision with the OpenCV Library , O'Reilly Media, Incorporated, 2008.(C interface only, not C++ from version 2.1 onwards. New version coming out in mid-2012)[Amazon - UK FR] [bib] |
Assignments
- Image Processing Course Assignment "Steganography": An exploration of several simple techniques for hiding information in the low order bits of images.
Assignment [ PDF ] Data [ DIR ] - Image Analysis Course Assignment "The level-crossing practical": Automated visual detection of events occurring in CCTV of a railway level crossing for automated safety and security monitoring.
Assignment [ PDF ] Data [ DIR ] Image Gallery [ DIR ] - App. DSP & CV Assignment "group project": Design a computer vision system to meet the requirements set out in the task given to your group.
Assignment [Cranfield] [ESTIA] Target (ESTIA) [PDF] [Templates]
Rovio Manual [PDF] U sing Rovio [PDF]
Rovio Setup Software : Windows [Installer] [Non-Installer] [Mac]
Rovio C++ Library [ZIPS] Rovio API v1.3 (implemented by Rovio C++ Library) [PDF]
libCURL [Windows] [Other] libCURL VS 2010 Setup [PDF]
OpenCV with libCURL [simple test example] Rovio Setup via Windows XP VM [PDF]
All assignments are covered by the university policy on plagiarism and students are advised to be fully aware of this when submitting practical work.
Recommended Supporting Textbooks
Computer Vision: Models, Learning and Inference , Cambridge University Press, 2012.[Full version on-line](recommended: IA, App. CV, ML + general reference on ML/CV ***)[Amazon - UK FR] [bib] | |
Machine Vision: Theory, Algorithms, Practicalities , Morgan Kaufmann, 2012.(recommended: App. CV)[Amazon - UK FR] [bib] | |
Video Tracking: Theory and Practice , Wiley, 2011.(recommended: App. CV - tracking only)[Amazon - UK FR] [bib] | |
Computer Vision: Algorithms and Applications , Springer, 2010.[Full version on-line](recommended: IP, IA, App. CV + general reference on CV ***)[Amazon - UK FR] [bib] | |
Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab , Wiley-Blackwell, 2010.[book website](recommended: IP, IA + general reference on IP ***)[Amazon - UK FR] [bib] [doi] | |
Digital Image Processing , Prentice Hall, 2008.(recommended: IP, IA + general reference on IP)[Amazon - UK FR] [bib] | |
Computer Vision: a Modern Approach , Prentice Hall, 2002.(recommended: IA, App. CV)[Amazon - UK FR] [bib] |