20个乒乓球中有一个是次品,次品比正品轻一点,用天平称,最少几次就能找出来?

1。分三组7,7,6 
     两组7上天平称,最坏的情况是不一样重(一样重的话次品在6个中)
2。取轻的那一组,再分三组 1,3,3
      两组3上天平称,最坏的情况是不一样重(一样重的话次品就是那个剩的)
2。在3个中随便拿2个称,不一样重轻的那个是次品, 一样重剩下那个是次品
数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
### 实现查找唯一较元素的算法 为了实现一个能够找到数组中唯一较元素(次品乒乓球)的功能,可以通过遍历整个数组并比较相邻元素的方法来完成。下面是一个具体的解决方案: 假设有一个 `double` 类型的数组 `p[]` 和其长度 `m`。 #### 函数设计 创建名为 `findLighterBallIndex` 的函数用于接收两个参数:一个是表示乒乓球重量的双精度浮点数类型的指针变量 `p`;另一个是指向该数组大小的整型变量 `m`。此函数会返回一个整数值作为结果——即所求得的目标位置索引。 ```c++ #include <iostream> using namespace std; int findLighterBallIndex(double* p, int m) { if (m <= 0 || !p) return -1; // 如果只有一个球,则它就是我们要找的那个 if(m == 1){ return 0; } // 遍历数组寻找更的那个球 for(int i = 1; i < m; ++i){ if(p[i] != p[0]){ // 假设第一个不同的球就是要找的那个 // 这里还需要确认这个球确实是最一个 bool isLightest = true; for(int j = 0; j < m && isLightest; ++j){ if(j != i && p[j] < p[i]) isLightest = false; } if(isLightest) return i; else break; } } // 默认情况下认为不存在这样的球 return -1; } ``` 上述代码实现了通过两次循环的方式找出的球的位置。第一次循环用来定位到不同于其他球的第一个实例,第二次内部循环则验证这颗球是不是真的比其他的都。如果找到了符合条件的情况就立即返回相应的下标值;如果没有发现任何异常情况或者输入数据不符合预期的话最终将会返回 `-1` 表明未成功匹配[^1]。 注意,在实际应用当中还可以考虑采用更加高效的算法比如二分法等来进行优化处理,这里仅提供了一种基础版本供理解概念之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值