Neutron网络实现模型——VxLAN详解

VXLAN的实现模型与VLAN的实现模型非常相像,如下图从表面来看,VXLAN与VLAN的实现模型相比,仅仅一个差别:VLAN中对应的br-ethx,而VXLAN中对应的是br-tun(br-tun是一个混合单词的缩写:Bridge-Tunnel。此时的Tunnel是VXLAN Tunnel。)其...

2018-05-18 21:35:32

阅读数:63

评论数:0

为CIFAR图片分类模型添加BN

一 实例描述演示BN函数的使用方法。二 代码import cifar10_input import tensorflow as tf import numpy as np from tensorflow.contrib.layers.python.layers import batch_norm ...

2018-05-18 19:59:41

阅读数:58

评论数:0

TensorFlow多通道卷积技术的演示

一 介绍这里说的多通道卷积,可以理解为一种新型的CNN网络模型,在原有卷积核模型的基础上的扩展。原有的卷积层是使用单个尺寸的卷积核对输入数据卷积操作,生成若干个feature map。而多通道卷积的变化就是,在单个卷积层中加入若干个不同尺寸的过滤器,这样会使生成的feature map特性更加多样...

2018-05-17 21:40:47

阅读数:161

评论数:0

TensorFlow优化卷积核技术演示

一 简介在实际的卷积训练中,为了加速,常常把卷积核裁开。比如一个3*3的过滤器,可以裁成3*1和1*3两个过滤器,分别对原有的输入做卷积操作,这样可以大大提高运算速度。原理:在浮点运算中乘法消耗的资源比较多,我们目的就是尽量减小乘法运算。比如对一个5*2的原始图片进行一次3*3的同卷积,相当于生成...

2018-05-16 20:09:54

阅读数:170

评论数:0

TensorFlow使用函数封装库重写CIFAR卷积网络

一 实例描述使用tf.contrib.layers进行重构,重写CIFAR卷积网络。二 代码import cifar10_input import tensorflow as tf import numpy as np batch_size = 128 data_dir = '/tmp/cifar...

2018-05-16 19:52:54

阅读数:124

评论数:0

演示梯度停止实现

一 实例描述在反向传播过程中某种特殊情况需要停止梯度的运算时,在TensorFlow中提供了一个tf.stop_gradient函数,被它定义过的节点将没有梯度运算功能。二 代码import tensorflow as tf tf.reset_default_graph() w1 = tf.get...

2018-05-15 21:28:59

阅读数:52

评论数:0

使用gradients对多个式子求多变量偏导

一 实例描述两个OP,4个参数,演示使用gradients同时为两个式子4个参数求梯度。二 代码import tensorflow as tf tf.reset_default_graph() w1 = tf.get_variable('w1', shape=[2]) w2 = tf.get_va...

2018-05-14 21:51:15

阅读数:74

评论数:0

演示gradients基本用法

一 实例描述通过定义两个矩阵相乘来演示使用gradients求梯度。在反向传播过程中,神经网络需要对每一个loss对应的学习参数求偏导。算出的这个值叫梯度,用来乘以学习率然后更新学习参数使用的。它是通过tf.gradients函数来实现的。tf.gradients函数里的第一个参数为求导公式,第二...

2018-05-14 21:37:34

阅读数:82

评论数:0

演示反池化的操作

TensorFlow中目前还没有反池化操作的函数。对于最大池化层,也不支持输出最大激活值得位置,但是同样有个池化的反向传播函数tf.nn.max_pool_with_argmax()。该函数可以找出位置,需要开发者利用这个函数做一些改动,自己封装一个最大池化操作,然后再根据mask写出反池化函数。...

2018-05-13 16:46:50

阅读数:142

评论数:0

反池化原理

反池化是池化的逆操作,是无法通过池化的结果还原出全部的原始数据。因为池化的过程就只保留了主要信息,舍去部分信息。如果想从池化后的这些主要信息恢复出全部信息,则存在信息缺失,这时只能通过补位来实现最大程度的信息完整。池化有两种:最大池化和平均池化,其反池化也需要与其对应。一 平均池化和反平均池化首先...

2018-05-13 16:29:48

阅读数:134

评论数:0

TensorFlow演示反卷积的操作

一 反卷积函数介绍1 语法格式def conv2d_transpose(value,filter,output_shape,strides,padding="SAME",data_format="NHWC",name=None...

2018-05-13 16:24:29

阅读数:110

评论数:0

反卷积原理

一 介绍反卷积,可以理解为卷积操作的逆运算。这里千万不要当成反卷积操作可以复原卷积操作的输入值,反卷积并没有那个功能,它仅仅是将卷积变换过程中的步骤反向变换一次而已,通过将卷积核转置,与卷积后的结果再做一遍卷积,所以它还有个名字叫转置卷积。虽然它不能还原出原来卷积的样子,但是在作用上具有类似的效果...

2018-05-13 15:17:20

阅读数:179

评论数:0

建立一个带有全局平均池化层的卷积神经网络

一 实例描述使用全局平均池化层来代替传统的全连接层,使用了3个卷积层的同卷积操作,滤波器为5*5,每个卷积层后面都会跟个步长为2*2的池化层,滤波器为2*2。2层的卷积加池后是输出为10个通道卷积层,然后对这10个feature map进行全局平均池化,得到10个特征,再对这10个特征进行soft...

2018-05-13 14:30:33

阅读数:350

评论数:0

反卷积神经网络介绍

反卷积是指:通过测量输出和已经输入重构未知输入的过程。在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积网络模型,没有学习训练的过程。下图所示为VGG 16反卷积神经网络的结构,展示了一个卷积网络和反卷积网络结合的过程。VGG 16是一个深度神经网络模型。它的反卷积就...

2018-05-13 11:29:09

阅读数:102

评论数:0

协调器用法演示

一 实例描述先建立一个100大小的队列。主线程不停地加1,队列线程再把主线程里的计数器放到队列里。当队列为空时,主线程在sess.run(queue.dequeue())语句位置挂起,当队列线程写入队列中时,主线程的计数器开始工作。整个操作都是在使用with语法的session中进行的,由于使用了...

2018-05-13 09:57:33

阅读数:66

评论数:0

在TensorFlow中使用queue

TensorFlow提供了一个队列机制,通过多线程将读取数据与计算数据分开。因为在处理海量数据集的训练时,无法把数据集一次全部载入到内存中,需要一边从硬盘中读取数据,一边进行训练计算。对于建立队列读取文件部分代码,已经在cifar10_input.py里实现了。这里讲解内部机制以及如何使用。一 队...

2018-05-12 17:24:12

阅读数:88

评论数:0

cifar10_input的distorted_inputs功能介绍

cifar10_input.py文件里还有个功能强大的函数——distorted_inputs,可以在代码中找到其实现。它是针对train数据的,对train数据进行了变形处理,起了一个数据增广的作用。在数据集比较小、数据量远远不够的情况下,可以对图片进行翻转、随机剪切等操作以增加数据,制作出更多...

2018-05-12 16:23:57

阅读数:124

评论数:0

显示CIFAR数据集的原始图片

如果希望看到正常的原始数据,有两种方式:1 修改cifar10_input.py文件,让它不去标准化。2 手动读取数据并显示一 通过修改cifar10_input.py1 直接修改cifar10_input.py的240行到245行之间代码 #下面这一行是添加的 float_image=re...

2018-05-12 16:11:07

阅读数:60

评论数:0

导入并显示CIFAR数据集

一 实例描述通过import cifar10_input来导入CIFAR数据集。二 代码import cifar10_input import tensorflow as tf import pylab #取数据 batch_size = 12 data_dir = '/tmp/cifar10_...

2018-05-12 15:49:51

阅读数:85

评论数:0

下载CIFAR数据

与MNIST类似,TensorFlow中同样有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来。下载和导入CIFAR数据集的代码在models里面,所以要去TensorFlow的Github网站将其下载下来。github下载...

2018-05-12 15:30:21

阅读数:67

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭