TensorFlow - 低阶 API

TensorFlow - 低阶 API

https://tensorflow.google.cn/guide/low_level_intro

TensorFlow 指南 - TensorFlow 工作原理
https://tensorflow.google.cn/guide

本指南旨在指导您使用低级别 TensorFlow API (TensorFlow Core) 开始编程。

  • 管理您自己的 TensorFlow 程序 (tf.Graph) 和 TensorFlow 运行时 (tf.Session),而不是依靠 Estimator 来管理它们。
  • 使用 tf.Session 运行 TensorFlow 操作。
  • 在此低级别环境中使用高级别组件 (数据集、层和 feature_columns)。
  • 构建自己的训练循环,而不是使用 Estimator 提供的训练循环。

我们建议尽可能使用更高阶的 API 构建模型。以下是 TensorFlow Core 为何很重要的原因:

  • 如果您能够直接使用低阶 TensorFlow 操作,实验和调试都会更直接。
  • 在使用更高阶的 API 时,能够理解其内部工作原理。
estimator ['estɪmeɪtə]:n. 估计量,评价者

1. 设置

在使用本指南之前,请先安装 TensorFlow。

您随时可以启动 python,并按照以下演示进行操作。运行以下行来设置您的 Python 环境:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

2. 张量值

TensorFlow 中的核心数据单位是张量。一个张量由一组形成阵列 (任意维数) 的原始值组成。张量的阶是它的维数,而它的形状是一个整数元组,指定了阵列每个维度的长度。以下是张量值的一些示例:

3. # a rank 0 tensor; a scalar with shape [],
[1., 2., 3.] # a rank 1 tensor; a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

TensorFlow 使用 numpy 阵列来表示张量值。

scalar ['skeɪlə]:adj. 标量的,数量的,梯状的,分等级的 n. 标量,数量

3. TensorFlow Core 演示

您可以将 TensorFlow Core 程序看作由两个互相独立的部分组成:

  • 构建计算图 (tf.Graph)。
  • 运行计算图 (使用 tf.Session)。

3.1 图

计算图是排列成一个图的一系列 TensorFlow 指令。图由两种类型的对象组成。

  • 操作 (简称 “op”):图的节点。操作描述了消耗和生成张量的计算。
  • 张量:图的边。它们代表将流经图的值。大多数 TensorFlow 函数会返回 tf.Tensors。

重要提示:tf.Tensors 不具有值,它们只是计算图中元素的手柄。

我们来构建一个简单的计算图。最基本的指令是一个常量。构建指令的 Python 函数将一个张量值作为输入值。生成的指令不需要输入值。它在运行时输出的是被传递给构造函数的值。我们可以创建如下所示的两个浮点数常量 a 和 b:

a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0) # also tf.float32 implicitly
total = a + b
print(a)
print(b)
print(total)

打印语句会生成:

Tensor("Const:0", shape=(), dtype=float32)
Tensor("Const_1:0", shape=(), dtype=float32)
Tensor("add:0", shape=(), dtype=float32)

请注意,打印张量并不会如您可能预期的那样输出值 3.0、4.0 和 7.0。上述语句只会构建计算图。这些 tf.Tensor 对象仅代表将要运行的操作的结果。

图中的每个指令都拥有唯一的名称。这个名称不同于使用 Python 分配给相应对象的名称。张量是根据生成它们的指令命名的,后面跟着输出索引,如上文的 “add:0” 所示。

3.2 TensorBoard

TensorFlow 提供了一个名为 TensorBoard 的实用程序。TensorBoard 的诸多功能之一是将计算图可视化。您只需要使用几个简单的命令就能轻松完成此操作。

首先将计算图保存为 TensorBoard 摘要文件,具体操作如下所示:

writer = tf.summary.FileWriter('.')
writer.add_graph(tf.get_default_graph())

这将在当前目录中生成一个 event 文件,其名称格式如下:

events.out.tfevents.{timestamp}.{hostname}

现在,在新的终端中使用以下 shell 命令启动 TensorBoard:

tensorboard --logdir .

接下来,在您的浏览器中打开 TensorBoard 的图页面,您应该会看到与以下图形类似的图:

在这里插入图片描述

TensorBoard screenshot

要详细了解 TensorBoard 的计算图可视化工具,请参阅 TensorBoard:图的直观展示。
https://tensorflow.google.cn/guide/graph_viz

3.3 会话 (Session)

要评估张量,需要实例化一个 tf.Session 对象 (非正式名称为会话)。会话会封装 TensorFlow 运行时的状态,并运行 TensorFlow 操作。如果说 tf.Graph 像一个 .py 文件,那么 tf.Session 就像一个 python 可执行对象。

下面的代码会创建一个 tf.Session 对象,然后调用其 run 方法来评估我们在上文中创建的 total 张量:

sess = tf.Session()
print(sess.run(total))

当您使用 Session.run 请求输出节点时,TensorFlow 会回溯整个图,并流经提供了所请求的输出节点对应的输入值的所有节点。因此此指令会打印预期的值 7.0:

7.0

您可以将多个张量传递给 tf.Session.run。run 方法以透明方式处理元组或字典的任何组合,如下例所示:

print(sess.run({'ab':(a, b), 'total':total}))

它返回的结果拥有相同的布局结构:

{'total': 7.0, 'ab': (3.0, 4.0)}

在调用 tf.Session.run 期间,任何 tf.Tensor 都只有单个值。例如,以下代码调用 tf.random_uniform 来生成一个 tf.Tensor,后者会生成随机的三元素矢量 (值位于 [0,1) 区间内):

vec = tf.random_uniform(shape=(3,))
out1 = vec + 1
out2 = vec + 2
print(sess.run(vec))
print(sess.run(vec))
print(sess.run((out1, out2)))

每次调用 run 时,结果都会显示不同的随机值,但在单个 run 期间 (out1 和 out2 接收到相同的随机输入值),结果显示的值是一致的:

[ 0.52917576  0.64076328  0.68353939]
[ 0.66192627  0.89126778  0.06254101]
(
  array([ 1.88408756,  1.87149239,  1.84057522], dtype=float32),
  array([ 2.88408756,  2.87149239,  2.84057522], dtype=float32)
)

部分 TensorFlow 函数会返回 tf.Operations,而不是 tf.Tensors。对指令调用 run 的结果是 None。您运行指令是为了产生副作用,而不是为了检索一个值。这方面的例子包括稍后将演示的初始化和训练操作。

3.4 供给

目前来讲,这个图不是特别有趣,因为它总是生成一个常量结果。图可以参数化以便接受外部输入,也称为占位符。占位符表示承诺在稍后提供值,它就像函数参数。

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y

前面三行有点像函数。我们定义了这个函数的两个输入参数 (x 和 y),然后对它们运行指令。我们可以使用 run 方法的 feed_dict 参数为占位符提供具体的值,从而评估这个具有多个输入的图:

print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))

上述操作的结果是输出以下内容:

7.5
[ 3.  7.]

另请注意,feed_dict 参数可用于覆盖图中的任何张量。占位符和其他 tf.Tensors 的唯一不同之处在于如果没有为占位符提供值,那么占位符会抛出错误。

4. 数据集

占位符适用于简单的实验,而数据集是将数据流式传输到模型的首选方法。

要从数据集中获取可运行的 tf.Tensor,您必须先将其转换成 tf.data.Iterator,然后调用迭代器的 get_next 方法。

创建迭代器的最简单的方式是采用 make_one_shot_iterator 方法。例如,在下面的代码中,next_item 张量将在每次 run 调用时从 my_data 阵列返回一行:

my_data = [
    [0, 1,],
    [2, 3,],
    [4, 5,],
    [6, 7,],
]
slices = tf.data.Dataset.from_tensor_slices(my_data)
next_item = slices.make_one_shot_iterator().get_next()

到达数据流末端时,Dataset 会抛出 OutOfRangeError。例如,下面的代码会一直读取 next_item,直到没有数据可读:

while True:
  try:
    print(sess.run(next_item))
  except tf.errors.OutOfRangeError:
    break

如果 Dataset 依赖于有状态操作,则可能需要在使用迭代器之前先初始化它,如下所示:

r = tf.random_normal([10,3])
dataset = tf.data.Dataset.from_tensor_slices(r)
iterator = dataset.make_initializable_iterator()
next_row = iterator.get_next()

sess.run(iterator.initializer)
while True:
  try:
    print(sess.run(next_row))
  except tf.errors.OutOfRangeError:
    break

要详细了解数据集和迭代器,请参阅导入数据。

5. 层

可训练的模型必须修改图中的值,以便在输入相同值的情况下获得新的输出值。将可训练参数添加到图中的首选方法是层。

层将变量和作用于它们的操作打包在一起。例如,密集连接层会对每个输出对应的所有输入执行加权和,并应用激活函数 (可选)。连接权重和偏差由层对象管理。

5.1 创建层

下面的代码会创建一个 Dense 层,该层会接受一批输入矢量,并为每个矢量生成一个输出值。要将层应用于输入值,请将该层当做函数来调用。例如:

x = tf.placeholder(tf.float32, shape=[None, 3])
linear_model = tf.layers.Dense(units=1)
y = linear_model(x)

层会检查其输入数据,以确定其内部变量的大小。因此,我们必须在这里设置 x 占位符的形状,以便层构建正确大小的权重矩阵。

我们现在已经定义了输出值 y 的计算,在我们运行计算之前,还需要处理一个细节。

5.2 初始化层

层包含的变量必须先初始化,然后才能使用。尽管可以单独初始化各个变量,但也可以轻松地初始化一个 TensorFlow 图中的所有变量 (如下所示):

init = tf.global_variables_initializer()
sess.run(init)

重要提示:调用 tf.global_variables_initializer 仅会创建并返回 TensorFlow 操作的句柄。当我们使用 tf.Session.run 运行该操作时,该操作将初始化所有全局变量。
另请注意,此 global_variables_initializer 仅会初始化创建初始化程序时图中就存在的变量。因此您应该在构建图表的最后一步添加初始化程序。

5.3 执行层

我们现在已经完成了层的初始化,可以像处理任何其他张量一样评估 linear_model 的输出张量了。例如,下面的代码:

print(sess.run(y, {x: [[1, 2, 3],[4, 5, 6]]}))

会生成一个两元素输出向量,如下所示:

[[-3.41378999]
 [-9.14999008]]

5.4 层函数的快捷方式

对于每个层类 (如 tf.layers.Dense),TensorFlow 还提供了一个快捷函数 (如 tf.layers.dense)。两者唯一的区别是快捷函数版本是在单次调用中创建和运行层。例如,以下代码等同于较早的版本:

x = tf.placeholder(tf.float32, shape=[None, 3])
y = tf.layers.dense(x, units=1)

init = tf.global_variables_initializer()
sess.run(init)

print(sess.run(y, {x: [[1, 2, 3], [4, 5, 6]]}))

尽管这种方法很方便,但无法访问 tf.layers.Layer 对象。这会让自省和调试变得更加困难,并且无法重复使用相应的层。

6. 特征列

使用特征列进行实验的最简单方法是使用 tf.feature_column.input_layer 函数。此函数只接受密集列作为输入,因此要查看类别列的结果,您必须将其封装在 tf.feature_column.indicator_column 中。例如:

features = {
    'sales' : [[5], [10], [8], [9]],
    'department': ['sports', 'sports', 'gardening', 'gardening']}

department_column = tf.feature_column.categorical_column_with_vocabulary_list(
        'department', ['sports', 'gardening'])
department_column = tf.feature_column.indicator_column(department_column)

columns = [
    tf.feature_column.numeric_column('sales'),
    department_column
]

inputs = tf.feature_column.input_layer(features, columns)

运行 inputs 张量会将 features 解析为一批向量。

特征列和层一样具有内部状态,因此通常需要将它们初始化。类别列会在内部使用对照表,而这些表需要单独的初始化操作 tf.tables_initializer。

var_init = tf.global_variables_initializer()
table_init = tf.tables_initializer()
sess = tf.Session()
sess.run((var_init, table_init))

初始化内部状态后,您可以运行 inputs (像运行任何其他 tf.Tensor 一样):

print(sess.run(inputs))

这显示了特征列如何打包输入矢量,并将独热“department”作为第一和第二个索引,将“sales”作为第三个索引。

[[  1.   0.   5.]
 [  1.   0.  10.]
 [  0.   1.   8.]
 [  0.   1.   9.]]

7. 训练

您现在已经了解 TensorFlow 核心部分的基础知识了,我们来手动训练一个小型回归模型吧。

7.1 定义数据

我们首先来定义一些输入值 x,以及每个输入值的预期输出值 y_true:

x = tf.constant([[1], [2], [3], [4]], dtype=tf.float32)
y_true = tf.constant([[0], [-1], [-2], [-3]], dtype=tf.float32)

7.2 定义模型

接下来,建立一个简单的线性模型,其输出值只有 1 个:

linear_model = tf.layers.Dense(units=1)

y_pred = linear_model(x)

您可以如下评估预测值:

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

print(sess.run(y_pred))

该模型尚未接受训练,因此四个“预测”值并不理想。以下是我们得到的结果,您自己的输出应该有所不同:

[[ 0.02631879]
 [ 0.05263758]
 [ 0.07895637]
 [ 0.10527515]]

7.3 损失

要优化模型,您首先需要定义损失。我们将使用均方误差,这是回归问题的标准损失。

虽然您可以使用较低级别的数学运算手动定义,但 tf.losses 模块提供了一系列常用的损失函数。您可以使用它来计算均方误差,具体操作如下所示:

loss = tf.losses.mean_squared_error(labels=y_true, predictions=y_pred)

print(sess.run(loss))

这会生成如下所示的一个损失值:

2.23962

7.4 训练

TensorFlow 提供了执行标准优化算法的优化器。这些优化器被实现为 tf.train.Optimizer 的子类。它们会逐渐改变每个变量,以便将损失最小化。最简单的优化算法是梯度下降法,由 tf.train.GradientDescentOptimizer 实现。它会根据损失相对于变量的导数大小来修改各个变量。例如:

optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

该代码构建了优化所需的所有图组件,并返回一个训练指令。该训练指令在运行时会更新图中的变量。您可以按以下方式运行该指令:

for i in range(100):
  _, loss_value = sess.run((train, loss))
  print(loss_value)

由于 train 是一个指令而不是张量,因此它在运行时不会返回一个值。为了查看训练期间损失的进展,我们会同时运行损失张量,生成如下所示的输出值:

1.35659
1.00412
0.759167
0.588829
0.470264
0.387626
0.329918
0.289511
0.261112
0.241046
...

7.5 完整程序

x = tf.constant([[1], [2], [3], [4]], dtype=tf.float32)
y_true = tf.constant([[0], [-1], [-2], [-3]], dtype=tf.float32)

linear_model = tf.layers.Dense(units=1)

y_pred = linear_model(x)
loss = tf.losses.mean_squared_error(labels=y_true, predictions=y_pred)

optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

init = tf.global_variables_initializer()

sess = tf.Session()
sess.run(init)
for i in range(100):
  _, loss_value = sess.run((train, loss))
  print(loss_value)

print(sess.run(y_pred))

8. 后续步骤

要详细了解如何使用 TensorFlow 构建模型,请参阅以下内容:

  • 自定义 Estimator,了解如何使用 TensorFlow 构建自定义模型。掌握 TensorFlow Core 知识有助于理解和调试您自己的模型。

References

https://tensorflow.google.cn/guide/graph_viz

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。 MindSpore提供了友好的设计和高效的执行,旨在提升数据科学家和算法工程师的开发体验,并为Ascend AI处理器提供原生支持,以及软硬件协同优化。 同时,MindSpore作为全球AI开源社区,致力于进一步开发和丰富AI软硬件应用生态。 MindSpore特点: 自动微分 当前主流深度学习框架有三种自动微分技术: 基于静态计算图的转换:编译时将网络转换为静态数据流图,将链式法则应用于数据流图,实现自动微分。 基于动态计算图的转换:记录算子过载正向执行时网络的运行轨迹,对动态生成的数据流图应用链式法则,实现自动微分。 基于源码的转换:该技术是从功能编程框架演进而来,以即时编译(Just-in-time Compilation,JIT)的形式对间表达式(程序在编译过程的表达式)进行自动差分转换,支持复杂的控制流场景、高阶函数和闭包。 TensorFlow早期采用的是静态计算图,PyTorch采用的是动态计算图。静态映射可以利用静态编译技术来优化网络性能,但是构建网络或调试网络非常复杂。动态图的使用非常方便,但很难实现性能的极限优化。 MindSpore找到了另一种方法,即基于源代码转换的自动微分。一方面,它支持自动控制流的自动微分,因此像PyTorch这样的模型构建非常方便。另一方面,MindSpore可以对神经网络进行静态编译优化,以获得更好的性能。 MindSpore自动微分的实现可以理解为程序本身的符号微分。MindSpore IR是一个函数间表达式,它与基础代数的复合函数具有直观的对应关系。复合函数的公式由任意可推导的基础函数组成。MindSpore IR的每个原语操作都可以对应基础代数的基本功能,从而可以建立更复杂的流控制。 自动并行 MindSpore自动并行的目的是构建数据并行、模型并行和混合并行相结合的训练方法。该方法能够自动选择开销最小的模型切分策略,实现自动分布并行训练。 目前MindSpore采用的是算子切分的细粒度并行策略,即图的每个算子被切分为一个集群,完成并行操作。在此期间的切分策略可能非常复杂,但是作为一名Python开发者,您无需关注底层实现,只要顶层API计算是有效的即可。
TensorFlow是一个开源的机器学习框架,具有以下特点:可移植、跨平台性强,可以在不同设备上运行;拥有良好的社区生态,提供详细的官方文档和文教程;内置了大量的机器学习算法;适用于工业生产,提供了Service和分布式等结构;具有良好的编程扩展性,支持多种编程语言。然而,TensorFlow也存在一些缺点,如调试困难、高阶API导致修改模型困难以及版本迁移麻烦\[1\]。 关于你提到的错误信息,根据引用\[2\],这可能是由于numpy版本不匹配导致的错误。你可以尝试更新numpy版本或者查找解决方案来解决这个问题。 另外,如果你想在TensorFlow 2.x使用TensorFlow 1.x的行为,你可以使用tf.disable_v2_behavior()函数\[3\]。 希望这些信息对你有帮助!如果还有其他问题,请随时提问。 #### 引用[.reference_title] - *1* [人工智能:TensorFlow深度学习框架介绍](https://blog.csdn.net/xishining/article/details/127738996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [TensorFlow ImportError: initialization failed](https://blog.csdn.net/jacke121/article/details/128070264)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [如何在tensorflow2环境运行tensorflow1代码](https://blog.csdn.net/qq_38251616/article/details/114885736)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值