单机运行Spark Shell遇到的一个低级错误

bin/spark-shell

下载spark-2.1.0-bin-hadoop2.7.tgz,解压缩直接进入spark根目录,然后运行bin/spark-shell即可进入。
但是今天遇到了一个低级错误:
java.net.BindException: Cannot assign requested address: Service ‘sparkDriver’ failed after 16 retries (starting from 0)! Consider explicitly setting the appropriate port for the service ‘sparkDriver’ (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.

[root@sk1 spark-2.1.0-bin-hadoop2.7]# bin/spark-shell 
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/07 22:33:37 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 WARN Utils: Service 'sparkDriver' could not bind on port 0. Attempting port 1.
17/04/07 22:33:38 ERROR SparkContext: Error initializing SparkContext.
java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after 16 retries (starting from 0)! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
    at sun.nio.ch.Net.bind0(Native Method)
    at sun.nio.ch.Net.bind(Net.java:433)
    at sun.nio.ch.Net.bind(Net.java:425)
    at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223)
    at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:127)
    at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:501)
    at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1218)
    at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:506)
    at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:491)
    at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:965)
    at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:210)
    at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:353)
    at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
    at java.lang.Thread.run(Thread.java:745)
java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after 16 retries (starting from 0)! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
  at sun.nio.ch.Net.bind0(Native Method)
  at sun.nio.ch.Net.bind(Net.java:433)
  at sun.nio.ch.Net.bind(Net.java:425)
  at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223)
  at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:127)
  at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:501)
  at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1218)
  at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:506)
  at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:491)
  at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:965)
  at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:210)
  at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:353)
  at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
  at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
  at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
  at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
  at java.lang.Thread.run(Thread.java:745)
<console>:14: error: not found: value spark
       import spark.implicits._
              ^
<console>:14: error: not found: value spark
       import spark.sql
              ^
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

问题原因

[root@sk1 ~]# ifconfig
ens32: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 192.168.11.138  netmask 255.255.255.0  broadcast 192.168.11.255
        inet6 fe80::a8bd:a097:8ca9:d22a  prefixlen 64  scopeid 0x20<link>
        ether 00:0c:29:c3:3e:9a  txqueuelen 1000  (Ethernet)
        RX packets 273939  bytes 395373188 (377.0 MiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 16657  bytes 2472671 (2.3 MiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
        inet 127.0.0.1  netmask 255.0.0.0
        inet6 ::1  prefixlen 128  scopeid 0x10<host>
        loop  txqueuelen 1  (Local Loopback)
        RX packets 276  bytes 23980 (23.4 KiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 276  bytes 23980 (23.4 KiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

本地IP是192.168.11.138

[root@sk1 ~]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.1.138   sk1

很显然,IP配置错了。改正即可

[root@sk1 ~]# vi /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.11.138  sk1

重新进入

[root@sk1 spark-2.1.0-bin-hadoop2.7]# bin/spark-shell 
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/07 22:41:20 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/07 22:41:32 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
17/04/07 22:41:33 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
17/04/07 22:41:34 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.11.138:4040
Spark context available as 'sc' (master = local[*], app id = local-1491619281633).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala> 
本教程为官方授权出品如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。量身定制打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。适合人群:1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值