100. 相同的树
给你两棵二叉树的根节点 p
和 q
,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例 1:
输入:p = [1,2,3], q = [1,2,3]
输出:true
示例 2:
输入:p = [1,2], q = [1,null,2]
输出:false
示例 3:
输入:p = [1,2,1], q = [1,1,2]
输出:false
提示:
- 两棵树上的节点数目都在范围
[0, 100]
内 -104 <= Node.val <= 104
题目分析
本题要求判断两棵二叉树是否相同。判断的标准是这两棵树在结构上相同,并且对应节点的值也相同。我们就可以采用递归的方式遍历左右子树,判断它们相不相等,递归的边界条件是p和q有一个为空,此时就可以判断两个结点是否相同了。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null || q == null)
return p == q;
return p.val == q.val && isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
101. 对称二叉树
给你一个二叉树的根节点 root
, 检查它是否轴对称。
示例 1:
输入:root = [1,2,2,3,4,4,3]
输出:true
示例 2:
输入:root = [1,2,2,null,3,null,3]
输出:false
提示:
- 树中节点数目在范围
[1, 1000]
内 -100 <= Node.val <= 100
题目分析
其实这一题和上一题几乎就是一模一样的,但是判断的对象变成了左子树和右子树是否相等,我们完全可以借用上一题的代码,小作修改而成。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null || q == null)
return p == q;
return p.val == q.val && isSameTree(p.left, q.right) && isSameTree(p.right, q.left);
}
public boolean isSymmetric(TreeNode root) {
return isSameTree(root.left, root.right);
}
}
110. 平衡二叉树
给定一个二叉树,判断它是否是 平衡二叉树
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
提示:
- 树中的节点数在范围
[0, 5000]
内 -104 <= Node.val <= 104
题目分析
**平衡二叉树:**是指该树所有节点的左右子树的高度相差不超过 1。
那么看到这道题,我们应该想到获取树的深度的代码,(获取树的深度)此时我们可以把那个加以利用,而我们在递归的过程中发现左子树和右子树不平衡了该怎么办呢?其实很简单,由于我们得到的深度是非负数,那么如果我们在递归过程中发现左右子树不平衡,就返回-1。
理论成立,代码执行~
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
int i = Tree_Depth(root);
return i != -1;
}
public int Tree_Depth(TreeNode root){
if(root == null)
return 0;
int l_height = Tree_Depth(root.left);
if(l_height == -1)
return -1;
int r_height = Tree_Depth(root.right);
if(r_height == -1 || Math.abs(l_height - r_height) > 1)
return -1;
return Math.max(l_height, r_height) + 1;
}
}
119. 二叉树的右试图
给定一个二叉树的 根节点 root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例 1:
**输入:**root = [1,2,3,null,5,null,4]
输出:[1,3,4]
解释:
示例 2:
**输入:**root = [1,2,3,4,null,null,null,5]
输出:[1,3,4,5]
解释:
示例 3:
**输入:**root = [1,null,3]
输出:[1,3]
示例 4:
**输入:**root = []
输出:[]
提示:
- 二叉树的节点个数的范围是
[0,100]
-100 <= Node.val <= 100
题目分析
本题需要我们查看右视图,我们便可以从右子树开始遍历,使用ans
记录符合条件的结点,如果结点的深度等于ans
的长度,我们就将该结点的值记录在ans
中。
由于根结点的深度是0,此时ans
的长度也是0,这样根节点的值就可以被记录在ans
中啦,以此类推,所有满足条件的值都会被记录在ans
中了。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> ans = new ArrayList<>();
public List<Integer> rightSideView(TreeNode root) {
f(root, 0);
return this.ans;
}
public void f(TreeNode root, int depth){
if(root == null)
return ;
if(ans.size() == depth)
this.ans.add(root.val);
f(root.right, depth + 1);
f(root.left, depth + 1);
}
}