递归在树中的利用

100. 相同的树

给你两棵二叉树的根节点 pq ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

示例 1:

img

输入:p = [1,2,3], q = [1,2,3]
输出:true

示例 2:

img

输入:p = [1,2], q = [1,null,2]
输出:false

示例 3:

img

输入:p = [1,2,1], q = [1,1,2]
输出:false

提示:

  • 两棵树上的节点数目都在范围 [0, 100]
  • -104 <= Node.val <= 104

题目分析

本题要求判断两棵二叉树是否相同。判断的标准是这两棵树在结构上相同,并且对应节点的值也相同。我们就可以采用递归的方式遍历左右子树,判断它们相不相等,递归的边界条件是p和q有一个为空,此时就可以判断两个结点是否相同了。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        if(p == null || q == null)
            return p == q;
        return p.val == q.val && isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
    }
}

101. 对称二叉树

给你一个二叉树的根节点 root , 检查它是否轴对称。

示例 1:

img

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

img

输入:root = [1,2,2,null,3,null,3]
输出:false

提示:

  • 树中节点数目在范围 [1, 1000]
  • -100 <= Node.val <= 100

题目分析

其实这一题和上一题几乎就是一模一样的,但是判断的对象变成了左子树和右子树是否相等,我们完全可以借用上一题的代码,小作修改而成。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        if(p == null || q == null)
            return p == q;
        return p.val == q.val && isSameTree(p.left, q.right) && isSameTree(p.right, q.left);
    }
    public boolean isSymmetric(TreeNode root) {
        return isSameTree(root.left, root.right);
    }
}

110. 平衡二叉树

给定一个二叉树,判断它是否是 平衡二叉树

示例 1:

img

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

img

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

提示:

  • 树中的节点数在范围 [0, 5000]
  • -104 <= Node.val <= 104

题目分析

**平衡二叉树:**是指该树所有节点的左右子树的高度相差不超过 1。

那么看到这道题,我们应该想到获取树的深度的代码,(获取树的深度)此时我们可以把那个加以利用,而我们在递归的过程中发现左子树和右子树不平衡了该怎么办呢?其实很简单,由于我们得到的深度是非负数,那么如果我们在递归过程中发现左右子树不平衡,就返回-1。

理论成立,代码执行~

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        int i = Tree_Depth(root);
        return i != -1;

    }
    public int Tree_Depth(TreeNode root){
        if(root == null)
            return 0;

        int l_height = Tree_Depth(root.left);
        if(l_height == -1)
            return -1;

        int r_height = Tree_Depth(root.right);
        if(r_height == -1 || Math.abs(l_height - r_height) > 1)
            return -1;
        
        return Math.max(l_height, r_height) + 1;
    }
}

119. 二叉树的右试图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例 1:

**输入:**root = [1,2,3,null,5,null,4]

输出:[1,3,4]

解释:

img

示例 2:

**输入:**root = [1,2,3,4,null,null,null,5]

输出:[1,3,4,5]

解释:

img

示例 3:

**输入:**root = [1,null,3]

输出:[1,3]

示例 4:

**输入:**root = []

输出:[]

提示:

  • 二叉树的节点个数的范围是 [0,100]
  • -100 <= Node.val <= 100

题目分析

本题需要我们查看右视图,我们便可以从右子树开始遍历,使用ans记录符合条件的结点,如果结点的深度等于ans的长度,我们就将该结点的值记录在ans中。

由于根结点的深度是0,此时ans的长度也是0,这样根节点的值就可以被记录在ans中啦,以此类推,所有满足条件的值都会被记录在ans中了。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> ans = new ArrayList<>();
    public List<Integer> rightSideView(TreeNode root) {
        f(root, 0);
        return this.ans;
    }
    public void f(TreeNode root, int depth){
        if(root == null)
            return ;
        if(ans.size() == depth)
            this.ans.add(root.val);
        f(root.right, depth + 1);
        f(root.left, depth + 1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值