llms.txt文件

llms.txt文件

目前llms.txt并没有收到普板的认可,并且在网站根目录创建。目前推荐创建llms.txt文件就可网站下面的robots.txt一样(robots.txt是告诉搜索引擎网站中那些部分可以被爬虫访问),llms.txt 是一套专门给大语言模型使用的,用于收集的网站中简洁干净的纯文本信息以帮助大模型在推理时使用网站的标准化提案。llms.txt提供一系列Markdown格式的链接指向某些文档,大模型在推理过程中可以完全不经任何处理读取到格式化的纯文本。
下面是mcp官网下的llms.txt,可以提供参考(https://modelcontextprotocol.io/llms-full.txt)

### 关于 RAG Framework 和 `sidamingzhu.txt` 文件的实现 #### RAG 框架概述 RAG(Retrieval-Augmented Generation)是一种结合检索和生成技术的方法,用于增强自然语言处理模型的能力。它主要分为三个阶段:查询分析、检索以及生成[^3]。 在 **查询分析** 阶段,系统会解析用户的输入并提取关键信息以便后续操作;随后,在 **检索** 阶段,利用向量存储或其他索引机制找到与当前请求最匹配的一组文档片段;最后进入 **生成** 阶段,借助大型预训练语言模型 (LLMs),综合所获取的信息来构建最终响应结果。 #### Token 解析器与文件写入工具 为了支持上述过程中的数据准备环节,可以采用 tokenTextSplitter 来按标记分割原始文本材料,并通过继承自 DocumentWriter 类别的 VectorStore 子类完成将这些分片后的单元存入矢量数据库的操作[^1]。 以下是 Python 中可能的一个简单示例代码展示如何使用此类组件: ```python from some_module import tokenTextSplitter, VectorStore def process_and_store(file_path="sidamingzhu.txt"): splitter = tokenTextSplitter() with open(file_path, 'r', encoding='utf-8') as f: content = f.read() tokens = splitter.split(content) vector_db = VectorStore() # 假设这是已经配置好的实例 for tok in tokens: vector_db.write(tok) process_and_store() ``` 此脚本读取名为 `"sidamingzhu.txt"` 的本地文件内容,运用指定方法对其进行拆解后再逐一保存至目标位置。 #### 推荐使用的推理框架 对于实际部署过程中涉及到的具体计算逻辑执行环境选择方面,则可考虑多种流行的开源解决方案之一作为基础架构支撑平台,比如 Ollama 或者 LangChain 等选项均提供了良好的兼容性和扩展性特性[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrissChan

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值