Agentic Pattern :Parallelization(基于Ollama、langchain、qwen3的代码实现)

参考https://www.philschmid.de/agentic-pattern?continueFlag=bbcc81bca91ef1baba75bc1619a0392c#acknowledgements,代码用langchain、ollama进行了改写

在这里插入图片描述
这个是一个workflow的Agent 模式,一个任务被分解成多个独立的子任务,由多个 LLM 同时处理,并将其输出汇总。这种模式使用了任务并发功能。初始查询(或其部分内容)与单个提示/目标并行发送给多个 LLM。所有分支完成后,它们的单独结果会被收集起来并传递给最后的聚合 LLM,后者会将它们合成为最终响应。如果子任务之间不相互依赖,这就能改善延迟,或通过多数表决或生成不同选项等技术提高质量。

使用案例:

  • 查询分解 RAG: 将复杂查询分解为子查询,并行运行每个子查询的检索,然后合成结果。
  • 分析大型文档: 将文档分成若干部分,并行汇总每个部分,然后合并汇总结果。
  • 生成多种观点: 用不同的角色提示向多个 LLM 提出相同的问题,然后汇总他们的回答。
  • 对数据进行 Map-reduce 式操作。

如下是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CrissChan

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值