前言:本人考数二,故只整理了公共部分。数一、三单独考察部分未整理。除必会公式外,还收录了自己做题中较常见的部分公式。
注:在1920x1080分辨率下,Edge浏览器可能会导致公式中部分“-”号显示异常,请调整缩放比至110%及以上,或使用其他浏览器。
由于本人考数二,恕其他部分无暇顾及,其次,本文只是笔记,故不会涵盖所有知识点。
已停更,暂无打印版,本文所有数学公式均为Latex手打,想打印的可以自己想办法复制出来拍一下版。
已更新内容:
- 函数极限与连续
- 数列极限
- 导数相关
- 积分相关
- 三角函数相关
- 不等式相关
- 多元函数
- 其他公式
- 复合函数相关
- 二重积分
- 微分方程
- 各种应用公式
- 隐藏条件
一、函数极限与连续
泰勒公式
s i n x = x − x 3 3 ! + o ( x 3 ) a r c s i n x = x + x 3 3 ! + o ( x 3 ) t a n x = x + x 3 3 + o ( x 3 ) a r c t a n x = x − x 3 3 + o ( x 3 ) c o s x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) l n ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) sinx=x-\frac{x^3}{3!}+o(x^3) \qquad arcsinx=x+\frac{x^3}{3!}+o(x^3)\\ tanx=x+\frac{x^3}{3}+o(x^3) \qquad arctanx=x-\frac{x^3}{3}+o(x^3)\\cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) \qquad (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha -1)}{2!}x^2+o(x^2)\\ e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) \qquad ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)\\ sinx=x−3!x3+o(x3)arcsinx=x+3!x3+o(x3)tanx=x+3x3+o(x3)arctanx=x−3x3+o(x3)cosx=1−2!x2+4!x4+o(x4)(1+x)α=1+αx+2!α(α−1)x2+o(x2)ex=1+x+2!x2+3!x3+o(x3)ln(1+x)=x−2x2+3x3+o(x3)
判断是否正负相间技巧:
若图像爆炸式增长,则恒正,如 :
e x e^x ex
若图像上下波动或增长缓慢,则正负相间,如:
s i n x 、 c o s x sinx、cosx sinx、cosx
麦克劳林公式
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 + ⋯ + x n n ! + o ( x n ) sin x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 6 + o ( x 3 ) cos x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 x 2 + o ( x 2 ) ln ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + o ( x 2 ) ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) arctan x = x − 1 3 x 3 + o ( x 3 ) tan x = x + 1 3 x 3 + o ( x 3 ) arcsin x = x + 1 6 x 3 + o ( x 3 ) e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}=1+x+\frac{x^2}{2}+\cdots+\frac{x^n}{n!}+o(x^n)\\ \sin x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}=x-\frac{x^3}{6}+o(x^3)\\ \cos x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n}=1-\frac{1}{2}x^2+o(x^2)\\ \ln(1+x)=\sum_{n=0}^{\infty}\frac{(-1)^n}{n+1}x^{n+1}=x-\frac{1}{2}x^2+o(x^2)\\ (1+x)^\alpha=1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+o(x^2)\\ \arctan x=x-\frac{1}{3}x^3+o(x^3)\\ \tan x=x+\frac{1}{3}x^3+o(x^3)\\ \arcsin x=x+\frac{1}{6}x^3+o(x^3) ex=n=0∑∞n!xn=1+x+2x2+⋯+n!xn+o(xn)sinx=n=0∑∞(2n+1)!(−1)nx2n+1=x−6x3+o(x3)cosx=n=0∑∞(2n)!(−1)nx2n=1−21x2+o(x2)ln(1+x)=n=0∑∞n+1(−1)nxn+1=x−21x2+o(x2)(1+x)α=1+n=1∑∞n!α(α−1)⋯(α−n+1)xn=1+αx+2!α(α−1)x2+o(x2)arctanx=x−31x3+o(x3)tanx=x+31x3+o(x3)arcsinx=x+61x3+o(x3)
常用等价无穷小
s i n x ∼ t a n x ∼ a r c s i n x ∼ a r c t a n x ∼ x x − s i n x ∼ 1 6 x 3 x − a r c s i n x ∼ − 1 6 x 3 x − t a n x ∼ − 1 3 x 3 x − a r c t a n x ∼ 1 3 x 3 1 − c o s x ∼ 1 2 x 2 ( 1 − c o s a x ∼ a 2 x 2 ) a x − 1 ∼ x l n a ( 1 + x ) a − 1 ∼ a x e x − 1 ∼ x l n ( 1 + x ) ∼ x sinx\sim tanx \sim arcsinx \sim arctanx \sim x\\ x-sinx \sim \frac{1}{6}x^3 \qquad x-arcsinx \sim -\frac{1}{6}x^3\\ x-tanx \sim -\frac{1}{3}x^3 \qquad x-arctanx \sim \frac{1}{3}x^3\\ 1-cosx \sim \frac{1}{2}x^2 \qquad (1-cos^ax \sim \frac{a}{2}x^2)\\ a^x-1 \sim xlna \qquad (1+x)^a -1 \sim ax\\ e^x-1 \sim x \qquad ln(1+x) \sim x\\ sinx∼tanx∼arcsinx∼arctanx∼xx−sinx∼61x3x−arcsinx∼−61x3x−tanx∼−31x3x−arctanx∼31x31−cosx∼21x2(1−cosax∼2ax2)ax−1∼xlna(1+x)a−1∼axex−1∼xln(1+x)∼x
注:
型 如 1 ∞ 即 I = lim g ( x ) f ( x ) 若 g ( x ) → 1 , f ( x ) → ∞ 则 令 A = lim f ( x ) [ g ( x ) − 1 ] I = e A 型如1^∞ \quad即 I=\lim{g(x)^{f(x)}} \\ 若g(x)\rightarrow1,f(x)\rightarrow ∞\\ 则令A={\lim{f(x)[g(x)-1]}} \\ I=e^A 型如1∞即I=limg(x)f(x)若g(x)→1,f(x)→∞则令A=limf(x)[g(x)−1]I=eA
比阶:
若 x → 0 时 , f ( x ) 和 g ( x ) 分 别 是 x 的 m 、 n 阶 无 穷 小 , 则 : 1 、 f ( x ) g ( x ) 是 x 的 m + n 阶 无 穷 小 2 、 若 m > n , f ( x ) g ( x ) 是 x 的 m − n 阶 无 穷 小 3 、 m > n 时 , f ( x ) ± g ( x ) 是 x 的 n 阶 无 穷 小 ; 4 、 m = n 时 , f ( x ) ± g ( x ) 是 x 的 n 阶 或 高 于 n 阶 无 穷 小 ; 5 、 ∫ 0 g ( x ) f ( t ) d t 是 x 的 ( m + 1 ) ⋅ n 阶 无 穷 小 \begin{aligned} 若x\rightarrow 0时,f(x)和g(x)分别是x的m、n阶无穷小,则:\\ &1、f(x)g(x)是x的m+n阶无穷小\\ &2、若m>n,\frac{f(x)}{g(x)}是x的m-n阶无穷小\\ &3、m>n时,f(x)\pm g(x)是x的n阶无穷小;\\ &4、m=n时,f(x)\pm g(x)是x的n阶\color{red}或\color{black}高于n阶无穷小;\\ &5、\int_0^{g(x)}{f(t)}dt是x的(m+1)\cdot n阶无穷小 \end{aligned} 若x→0时,f(x)和g(x)分别是x的m、n阶无穷小,则:1、f(x)g(x)是x的m+n阶无穷小2、若m>n,g(x)f(x)是x的m−n阶无穷小3、m>n时,f(x)±g(x)是x的n阶无穷小;4、m=n时,f(x)±g(x)是x的n阶或高于n阶无穷小;5、∫0g(x)f(t)dt是x的(m+1)⋅n阶无穷小
增长速度:
x → ∞ 时 , a < l o g a x < x < a x < x ! < x x x\rightarrow ∞ 时, a<log_ax<x<a^x<x!<x^x\\ x→∞时,a<logax<x<ax<x!<xx
洛必达易错点:
1 、 对 0 0 、 ∞ ∞ 型 可 使 用 洛 必 达 , 若 结 果 不 存 在 , 则 洛 必 达 失 效 , 应 使 用 其 他 方 法 。 2 、 若 f ( x ) 在 x = 0 处 无 定 义 , 如 f ( x ) = 1 x , 则 对 lim x → 0 ∫ 0 x f ( t ) d t x 不 能 使 用 洛 必 达 原 因 : 对 变 限 积 分 ∫ a x f ( t ) d t 求 导 的 前 提 : 在 [ a , x ] 内 连 续 3 、 f ( x ) 在 某 处 存 在 二 阶 导 数 ⇏ f ( x ) 二 阶 导 数 连 续 即 对 于 lim x → 0 f ′ ( x ) x 不 能 使 用 洛 必 达 \begin{aligned} &1、对\frac{0}{0}、\frac{∞}{∞}型可使用洛必达,若结果不存在,则洛必达失效,应使用其他方法。\\\\ &2、若f(x)在x=0处无定义,如f(x)=\frac{1}{x} ,则对\lim_{x \rightarrow 0}{\frac{\int_0^xf(t)dt}{x}}不能使用洛必达\\ 原因:对变限积分\int_a^xf(t)dt求导的前提:在[a,x]内连续\\ &3、 f(x)在某处存在二阶导数\nRightarrow f(x)二阶导数连续\\ 即对于\lim_{x \rightarrow 0}{\frac{f'(x)}{x}}不能使用洛必达\\ \end{aligned} 原因:对变限积分∫axf(t)dt求导的前提:在[a,x]内连续即对于x→0limxf′(x)不能使用洛必达1、对00、∞∞型可使用洛必达,若结果不存在,则洛必达失效,应使用其他方法。2、若f(x)在x=0处无定义,如f(x)=x1,则对x→0limx∫0xf(t)dt不能使用洛必达3、f(x)在某处存在二阶导数⇏f(x)二阶导数连续
其他结论:
1 、 { a m p ; lim n → + ∞ a 1 n + a 2 n + ⋯ + a m n n = m a x { a 1 , a 2 ⋯ , a m } a m p ; lim n → − ∞ a 1 n + a 2 n + ⋯ + a m n n = m i n { a 1 , a 2 ⋯ , a m } ( a 1 … a m 都 是 非 负 数 ) 2 、 ∫ 0 + ∞ e − x 2 d x = π 2 3 、 lim n → ∞ a n = 1 ( a > 0 ) \begin{aligned} &1、 \left\{ \begin{aligned} &\lim_{n \rightarrow +\infty}{\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}}=max\{a_1,a_2\cdots,a_m\} \\ &\lim_{n \rightarrow -\infty}{\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}}=min\{a_1,a_2\cdots,a_m\} \end{aligned} \right. (a_1\dots a_m都是非负数) \\ &2、\int_0^{+\infty} e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\\ &3、\lim_{n \rightarrow \infty}{\sqrt[n]{a}=1} \qquad (a>0) \end{aligned} 1、⎩⎨⎧amp;n→+∞limna1n+a2n+⋯+amn=max{a1,a2⋯,am}amp;n→−∞limna1n+a2n+⋯+amn=min{a1,a2⋯,am}(a1…am都是非负数)2、∫0+∞e−x2dx=2π3、n→∞limna=1(a>0)
二、数列极限
单调性
1、利用基本不等式
2 、 把 x n 改 为 x , 引 入 f ( x ) 证 明 数 列 单 调 2、把x_n改为x,引入f(x)证明数列单调 2、把xn改为x,引入f(x)证明数列单调
{ 若 f ′ ( x ) > 0 , 则 { x n } 单 调 { 当 x 2 > x 1 时 , { x n } 单 调 增 加 当 x 2 < x 1 时 , { x n } 单 调 减 小 f ′ ( x ) < 0 时 , 则 { x n } 不 单 调 \begin{aligned} \left\{ \begin{aligned} &若f'(x)>0,则\{x_n\}单调\left\{ \begin{aligned} 当x_2>x_1时,\{x_n\}单调增加\\ 当x_2<x_1时,\{x_n\}单调减小\\ \end{aligned} \right.\\\\ & f'(x)<0时,则\{x_n\}不单调 \end{aligned} \right. \end{aligned} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧若f′(x)>0,则{xn}单调{当x2>x1时,{xn}单调增加当x2<x1时,{xn}单调减小f′(x)<0时,则{xn}不单调
三、导数相关
基本求导公式:
( x α ) ′ = α x α − 1 , ( a x ) ′ = a x l n a , ( e x ) ′ = e x , ( l o g a x ) ′ = 1 x l n a , ( l n x ) ′ = 1 x ( s i n x ) ′ = c o s x , ( c o s x ) ′ = − s i n x , ( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 ( t a n x ) ′ = s e x 2 x , ( c o t x ) ′ = − c s c 2 x , ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 ( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (x^\alpha)'=\alpha x^{\alpha -1} ,\quad (a^x)'=a^xlna,\quad (e^x)'=e^x,\quad (log_ax)'=\frac{1}{xlna} ,\quad (lnx)'=\frac{1}{x}\\ (sinx)'=cosx,\quad (cosx)'=-sinx,\quad (arcsinx)'=\frac{1}{\sqrt{1-x^2}} ,\quad (arccosx)'=-\frac{1}{\sqrt{1-x^2}} \\ (tanx)'=sex^2x ,\quad (cotx)'=-csc^2x ,\quad (arctanx)'=\frac{1}{1+x^2} ,\quad (arccotx)'=-\frac{1}{1+x^2} \\ (secx)'=secxtanx ,\quad (cscx)'=-cscxcotx (xα)′=αxα−1,(ax)′=axlna,(ex)′=ex,(logax)′=xlna1,(lnx)′=x1(sinx)′=cosx,(cosx)′=−sinx,(arcsinx)′=1−x21,(arccosx)′=−1−x21(tanx)′=sex2x,(cotx)′=−csc2x,(arctanx)′=1+x21,(arccotx)′=−1+x21(secx)′=secxtanx,(cscx)′=−cscxcotx
特殊求导:
( l n ∣ x ∣ ) ′ = 1 x l n ∣ x ∣ 求 导 可 视 绝 对 值 而 不 见 ( e x + e − x ) ′ ′ = e x + e − x [ l n ( x + a 2 + x 2 ) ] ′ = 1 a 2 + x 2 ( l n ( x + 1 + x 2 ) 为 奇 函 数 ) \begin{aligned} &(ln|x|)'=\frac{1}{x} \qquad ln|x|求导可视绝对值而不见 \\ &(e^x+e^{-x})''=e^x+e^{-x}\\ &[ln(x+\sqrt{a^2+x^2})]'=\frac{1}{\sqrt{a^2+x^2}} \quad (ln(x+\sqrt{1+x^2})为奇函数) \end{aligned} (ln∣x∣)′=x1ln∣x∣求导可视绝对值而不见(ex+e−x)′′=ex+e−x[ln(x+a2+x2)]′=a2+x21(ln(x+1+x2)为奇函数)
导数定义
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a Δ y = A Δ x + o ( Δ x ) ( 线 性 主 部 : A Δ x = d y = y x ′ Δ x ) \begin{aligned} &f'(x)=\lim_{\Delta x \rightarrow 0}{\frac{f(x+ \Delta x)-f(x)}{\Delta x}}\\ &f'(a)=\lim_{x \rightarrow a}{\frac{f(x)-f(a)}{x-a}}\\ &\Delta y=A \Delta x+o(\Delta x) \qquad (线性主部:A\Delta x=dy=y'_x\Delta x)\\ \end{aligned} f′(x)=Δx→0limΔxf(x+Δx)−f(x)f′(a)=x→alimx−af(x)−f(a)Δy=AΔx+o(Δx)(线性主部:AΔx=dy=yx′Δx)
高阶求导公式
(
e
a
x
+
b
)
(
n
)
=
a
n
e
a
x
+
b
(e^{ax+b})^{(n)}=a^ne^{ax+b}
(eax+b)(n)=aneax+b
[
s
i
n
(
a
x
+
b
)
]
(
n
)
=
a
n
s
i
n
(
a
x
+
b
+
n
2
π
)
[sin(ax+b)]^{(n)}=a^nsin(ax+b+\frac{n}{2}\pi)
[sin(ax+b)](n)=ansin(ax+b+2nπ)
[
c
o
s
(
a
x
+
b
)
]
(
n
)
=
a
n
c
o
s
(
a
x
+
b
+
n
2
π
)
[cos(ax+b)]^{(n)}=a^ncos(ax+b+\frac{n}{2}\pi)
[cos(ax+b)](n)=ancos(ax+b+2nπ)
[
l
n
(
a
x
+
b
)
]
(
n
)
=
(
−
1
)
n
−
1
a
n
(
n
−
1
)
!
(
a
x
+
b
)
n
[ln(ax+b)]^{(n)}=(-1)^{n-1}a^n\frac{(n-1)!}{(ax+b)^n}
[ln(ax+b)](n)=(−1)n−1an(ax+b)n(n−1)!
(
1
a
+
b
x
)
(
n
)
=
(
−
1
)
n
b
n
n
!
(
a
+
b
x
)
n
+
1
(\frac{1}{a+bx})^{(n)}=(-1)^nb^n\frac{n!}{(a+bx)^{n+1}}
(a+bx1)(n)=(−1)nbn(a+bx)n+1n!
(
1
a
−
b
x
)
(
n
)
=
b
n
n
!
(
a
−
b
x
)
n
+
1
(\frac{1}{a-bx})^{(n)}=b^n\frac{n!}{(a-bx)^{n+1}}
(a−bx1)(n)=bn(a−bx)n+1n!
扩 展 : 题 目 可 以 出 成 f ( x , y ) 对 x 求 n 阶 偏 导 扩展:题目可以出成 f(x,y) 对 x 求n阶偏导 扩展:题目可以出成f(x,y)对x求n阶偏导
子孙三代的关系
∫
0
x
f
(
x
)
d
x
⟵
f
(
x
)
⟶
f
′
(
x
)
奇
⟵
①
偶
⟶
奇
偶
⟵
奇
⟶
偶
T
⟵
②
T
⟶
T
\int_0^xf(x)dx\longleftarrow \quad f(x) \longrightarrow \quad f'(x)\\ \qquad 奇\stackrel{①}{\longleftarrow} \quad偶 \quad \longrightarrow \quad 奇\\ \qquad 偶\longleftarrow \quad 奇 \quad \longrightarrow \quad 偶\\ \qquad T \stackrel{②}{\longleftarrow} \quad T \quad \longrightarrow \quad T\\
∫0xf(x)dx⟵f(x)⟶f′(x)奇⟵①偶⟶奇偶⟵奇⟶偶T⟵②T⟶T
①
当
且
仅
当
下
限
为
0
时
成
立
②
当
且
仅
当
∫
0
T
f
(
x
)
d
x
=
0
时
成
立
\begin{aligned} &①\quad当且仅当下限为0时成立\\ &②\quad 当且仅当 \int_0^Tf(x)dx=0 时成立\\ \end{aligned}
①当且仅当下限为0时成立②当且仅当∫0Tf(x)dx=0时成立
带拉格朗日余项的 n 阶泰勒公式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( ξ ) ( x − x 0 ) n ( ξ 介 于 x , x 0 之 间 ) f(x)=f(x_0)+f'(x_0)(x-x_0)+ \cdots +\frac{1}{n!}f^{(n)}(\xi)(x-x_0)^n \quad (\xi介于x,x_0之间) f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!1f(n)(ξ)(x−x0)n(ξ介于x,x0之间)
其他结论
1
、
g
(
x
)
在
a
处
连
续
,
若
f
(
x
)
=
∣
x
−
a
∣
g
(
x
)
在
x
=
a
处
可
导
,
则
g
(
a
)
=
0
\begin{aligned} 1、g(x)在a处连续,若f(x)=|x-a|g(x)在x=a处可导,则g(a)=0\\\\ \end{aligned}
1、g(x)在a处连续,若f(x)=∣x−a∣g(x)在x=a处可导,则g(a)=0
2
、
若
f
(
x
)
在
x
=
0
处
连
续
,
且
lim
x
→
0
f
(
x
)
x
=
A
则
:
①
f
(
0
)
=
0
。
②
f
′
(
0
)
=
A
。
\begin{aligned} &2、若f(x)在x=0处连续,且\lim_{x \rightarrow 0}{\frac{f(x)}{x}}=A\\ &则:①\quad f(0)=0。\qquad ②\quad f'(0)=A。\\ \end{aligned}
2、若f(x)在x=0处连续,且x→0limxf(x)=A则:①f(0)=0。②f′(0)=A。
3
、
不
定
积
分
存
在
定
理
①
f
(
x
)
在
区
间
I
上
连
续
⟶
f
(
x
)
在
I
上
有
原
函
数
。
②
f
(
x
)
在
区
间
上
有
第
一
类
间
断
点
、
无
穷
间
断
点
⟶
f
(
x
)
在
I
上
不
存
在
原
函
数
。
\begin{aligned} 3、&不定积分存在定理\\ &①\quad f(x)在区间I上连续\longrightarrow f(x)在I上有原函数。\\&②\quad f(x)在区间上有第一类间断点、无穷间断点\longrightarrow f(x)在I上不存在原函数。 \end{aligned}
3、不定积分存在定理①f(x)在区间I上连续⟶f(x)在I上有原函数。②f(x)在区间上有第一类间断点、无穷间断点⟶f(x)在I上不存在原函数。
4
、
定
积
分
存
在
定
理
a
m
p
;
充
分
条
件
:
①
f
(
x
)
在
区
间
[
a
,
b
]
上
连
续
⟶
F
(
x
)
=
∫
a
b
f
(
x
)
d
x
存
在
⇔
f
(
x
)
在
[
a
,
b
]
可
积
a
m
p
;
②
f
(
x
)
在
区
间
[
a
,
b
]
上
单
调
⟶
F
(
x
)
=
∫
a
b
f
(
x
)
d
x
存
在
⇔
f
(
x
)
)
在
[
a
,
b
]
可
积
a
m
p
;
③
f
(
x
)
在
区
间
[
a
,
b
]
上
有
界
,
且
只
有
有
限
个
间
断
点
⟶
F
(
x
)
=
∫
a
b
f
(
x
)
d
x
存
在
⇔
f
(
x
)
在
[
a
,
b
]
可
积
a
m
p
;
必
要
条
件
:
a
m
p
;
①
可
积
函
数
必
有
界
,
即
若
定
积
分
F
(
x
)
=
∫
a
b
f
(
x
)
d
x
存
在
,
则
f
(
x
)
在
[
a
,
b
]
上
必
有
界
。
\begin{aligned} 4、&定积分存在定理\\\\ &充分条件:\\ &①\quad f(x)在区间[a,b]上连续\longrightarrow F(x)= \int_a^bf(x)dx存在\Leftrightarrow f(x)在[a,b]可积\\&②\quad f(x)在区间[a,b]上单调\longrightarrow F(x)= \int_a^bf(x)dx存在 \Leftrightarrow f(x))在[a,b]可积\\&③\quad f(x)在区间[a,b]上有界,且只有有限个间断点\longrightarrow F(x)= \int_a^bf(x)dx存在 \Leftrightarrow f(x)在[a,b]可积\\\\ &必要条件:\\ &① \quad可积函数必有界,即若定积分F(x)= \int_a^bf(x)dx存在,则f(x)在[a,b]上必有界。 \end{aligned}
4、定积分存在定理amp;充分条件:①f(x)在区间[a,b]上连续⟶F(x)=∫abf(x)dx存在⇔f(x)在[a,b]可积amp;②f(x)在区间[a,b]上单调⟶F(x)=∫abf(x)dx存在⇔f(x))在[a,b]可积amp;③f(x)在区间[a,b]上有界,且只有有限个间断点⟶F(x)=∫abf(x)dx存在⇔f(x)在[a,b]可积amp;必要条件:amp;①可积函数必有界,即若定积分F(x)=∫abf(x)dx存在,则f(x)在[a,b]上必有界。
5 、 变 限 积 分 的 性 质 : ① 函 数 f ( x ) 在 [ a , b ] 上 可 积 , 则 F ( x ) = ∫ a x f ( t ) d t 在 [ a , b ] 连 续 。 ② 函 数 f ( x ) 在 [ a , b ] 上 连 续 , 则 F ( x ) = ∫ a x f ( t ) d t 在 [ a , b ] 可 导 。 \begin{aligned} 5、&变限积分的性质:\\ &①\quad 函数f(x)在[a,b]上可积,则F(x)= \int_a^xf(t)dt在[a,b]连续。\\ &②\quad 函数f(x)在[a,b]上连续,则F(x)= \int_a^xf(t)dt在[a,b]可导。\\ \end{aligned} 5、变限积分的性质:①函数f(x)在[a,b]上可积,则F(x)=∫axf(t)dt在[a,b]连续。②函数f(x)在[a,b]上连续,则F(x)=∫axf(t)dt在[a,b]可导。
三、积分相关
基本积分公式
关 于 a 2 和 x 2 积 分 关于a^2 和x^2 积分 关于a2和x2积分
∫ 1 x 2 + a 2 d x = 1 a a r c t a n x a + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int\frac{1}{x^2+a^2}dx=\frac{1}{a}arctan\frac{x}{a}+C\\ \int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C\\ ∫x2+a21dx=a1arctanax+C∫x2−a21dx=2a1ln∣x+ax−a∣+C
∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C ∫ 1 x 2 − a 2 d x = ln ∣ x + x 2 − a 2 ∣ + C ∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int\frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C\\ \int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C\\ \int\frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C\\ ∫x2+a21dx=ln(x+x2+a2)+C∫x2−a21dx=ln∣x+x2−a2∣+C∫a2−x21dx=arcsinax+C
∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ( x + x 2 + a 2 ) + C ∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 ln ∣ x + x 2 − a 2 ∣ + C ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin x a + C \int\sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C\\ \int\sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\ln|x+\sqrt{x^2-a^2}|+C\\ \int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{a}+C\\ ∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C∫x2−a2dx=2xx2−a2−2a2ln∣x+x2−a2∣+C∫a2−x2dx=2xa2−x2+2a2arcsinax+C
关于三角函数积分
∫ s e c x d x = ln ∣ s e c x + t a n x ∣ + C ∫ c s c x d x = ln ∣ c s c x − c o t x ∣ + C \int{secx}dx=\ln|secx+tanx|+C\\ \int{cscx}dx=\ln|cscx-cotx|+C\\ ∫secxdx=ln∣secx+tanx∣+C∫cscxdx=ln∣cscx−cotx∣+C
∫ s e c 2 x d x = t a n x + C ∫ c s c 2 x d x = − c o t x + C \int{sec^2x}dx=tanx+C\\ \int{csc^2x}dx=-cotx+C\\ ∫sec2xdx=tanx+C∫csc2xdx=−cotx+C
∫ s e c x t a n x d x = s e c x + C ∫ c s c x c o t x d x = − c s c x + C \int{secxtanx}dx=secx+C\\ \int{cscxcotx}dx=-cscx+C\\ ∫secxtanxdx=secx+C∫cscxcotxdx=−cscx+C
∫ s i n 2 x d x = 1 2 x − 1 4 s i n 2 x + C ∫ c o s 2 x d x = 1 2 x + 1 4 s i n 2 x + C \int{sin^2x}dx=\frac{1}{2}x-\frac{1}{4}sin2x+C\\ \int{cos^2x}dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\\ ∫sin2xdx=21x−41sin2x+C∫cos2xdx=21x+41sin2x+C
∫ t a n 2 x d x = t a n x − x + C ∫ c o t 2 x d x = − c o t x − x + C \int{tan^2x}dx=tanx - x+C\\ \int{cot^2x}dx=-cotx - x+C\\ ∫tan2xdx=tanx−x+C∫cot2xdx=−cotx−x+C
Wallis(华里士)公式及相关
I n = ∫ 0 π 2 s i n n x d x = { a m p ; n − 1 n ⋅ n − 3 n − 2 ⋅ ⋅ ⋅ 3 4 ⋅ 1 2 ⋅ π 2 n 为 正 偶 数 a m p ; n − 1 n ⋅ n − 3 n − 2 ⋅ ⋅ ⋅ 4 5 ⋅ 2 3 ⋅ 1 n 为 正 奇 数 I_n=\int_0^\frac{\pi}{2}{sin^nx}dx=\left\{ \begin{aligned} &\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\cdot\cdot\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2} \quad n为正偶数 \\\\ &\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\cdot\cdot\frac{4}{5}\cdot\frac{2}{3}\cdot1\quad n为正奇数 \\ \end{aligned} \right. In=∫02πsinnxdx=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧amp;nn−1⋅n−2n−3⋅⋅⋅43⋅21⋅2πn为正偶数amp;nn−1⋅n−2n−3⋅⋅⋅54⋅32⋅1n为正奇数
{ ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x ∫ 0 π s i n n x d x = 2 ∫ 0 π 2 s i n n x d x ∫ 0 π c o s n x d x = { 0 n 为 正 奇 数 2 ∫ 0 π 2 c o s n x d x n 为 正 偶 数 ∫ 0 2 π s i n n x d x = ∫ 0 2 π c o s n x d x = { 0 n 为 正 奇 数 4 ∫ 0 π 2 c o s n x d x n 为 正 偶 数 \begin{aligned} \left\{ \begin{aligned} &\int_0^\frac{\pi}{2}{sin^nx}dx=\int_0^\frac{\pi}{2}{cos^nx}dx\\\\ &\int_0^\pi{sin^nx}dx=2\int_0^\frac{\pi}{2}{sin^nx}dx\\ &\int_0^\pi{cos^nx}dx=\left\{ \begin{aligned} &0 \qquad &&n为正奇数\\ &2\int_0^\frac{\pi}{2}{cos^nx}dx &&n为正偶数\\ \end{aligned} \right. \\\\ &\int_0^{2\pi}{sin^nx}dx=\int_0^{2\pi}{cos^nx}dx= \left\{ \begin{aligned} &0 \qquad &&n为正奇数\\ &4\int_0^\frac{\pi}{2}{cos^nx}dx &&n为正偶数\\ \end{aligned} \right. \\\\ \end{aligned} \right. \end{aligned} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧∫02πsinnxdx=∫02πcosnxdx∫0πsinnxdx=2∫02πsinnxdx∫0πcosnxdx=⎩⎪⎨⎪⎧02∫02πcosnxdxn为正奇数n为正偶数∫02πsinnxdx=∫02πcosnxdx=⎩⎪⎨⎪⎧04∫02πcosnxdxn为正奇数n为正偶数
∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi xf(sinx)dx=\frac{\pi}{2}\int_0^\pi f(sinx)dx=\pi\int_0^\frac{\pi}{2} f(sinx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx
注:
① f ( s i n x ) 包 括 f ( ∣ c o s x ∣ ) 、 f ( c o s n x ) d x ( n 为 偶 数 ) ② 有 人 误 以 为 c o s x = 1 − s i n 2 x 可 以 写 成 f ( s i n x ) , 当 x ∈ [ 0 , π ] 时 , c o s x ∈ [ − 1 , 1 ] , 而 1 − s i n 2 x = ∣ c o s x ∣ ∈ [ 0 , 1 ] 显 然 不 成 立 。 \begin{aligned} &①\quad f(sinx)包括f(|cosx|)、f(cos^nx)dx(n为偶数)\\ &② \quad 有人误以为 cosx=\sqrt{1-sin^2x}可以写成f(sinx),\\ &当x\in[0,\pi]时,cosx\in[-1,1],而\sqrt{1-sin^2x}=|cosx|\in[0,1]\\ &显然不成立。 \end{aligned} ①f(sinx)包括f(∣cosx∣)、f(cosnx)dx(n为偶数)②有人误以为cosx=1−sin2x可以写成f(sinx),当x∈[0,π]时,cosx∈[−1,1],而1−sin2x=∣cosx∣∈[0,1]显然不成立。
做题常见积分
∫
x
s
i
n
x
d
x
=
−
x
c
o
s
x
+
s
i
n
x
+
C
∫
x
c
o
s
x
d
x
=
x
s
i
n
x
+
c
o
s
x
+
C
\begin{aligned} \int{xsinx}dx=-xcosx+sinx+C\\ \int{xcosx}dx=xsinx+cosx+C\\ \end{aligned}
∫xsinxdx=−xcosx+sinx+C∫xcosxdx=xsinx+cosx+C
∫
l
n
x
d
x
=
x
l
n
x
−
x
+
C
\int{ln{x}}dx=xlnx-x+C
∫lnxdx=xlnx−x+C
∫ x l n x d x = 1 2 x 2 l n x − 1 4 x 2 + C \int{xln{x}}dx=\frac{1}{2}x^2lnx-\frac{1}{4}x^2+C ∫xlnxdx=21x2lnx−41x2+C
∫ x e x d x = x e x − e x + C \int{xe^x}dx=xe^x-e^x+C ∫xexdx=xex−ex+C
∫ s i n 2 x d x = s i n 2 x + C \int{sin2x}dx=sin^2x+C ∫sin2xdx=sin2x+C
∫ f ′ ( x ) f ( x ) d x = l n ∣ f ( x ) ∣ + C ( 常 用 于 构 造 辅 助 函 数 ) \int{\frac{f'(x)}{f(x)}}dx=ln|f(x)|+C \quad(常用于构造辅助函数) ∫f(x)f′(x)dx=ln∣f(x)∣+C(常用于构造辅助函数)
反常积分的判敛
a m p ; ① 要 求 每 个 积 分 有 且 仅 有 一 个 奇 点 a m p ; ② { ∫ 1 + ∞ 1 x p { a m p ; p > 1 时 , a m p ; 收 敛 a m p ; p ≤ 1 , a m p ; 发 散 a m p ; ( 大 的 喜 欢 大 的 ) ∫ 0 1 1 x p { a m p ; 0 < p < 1 时 , a m p ; 收 敛 a m p ; p ≥ 1 , a m p ; 发 散 a m p ; ( 小 的 喜 欢 小 的 ) \begin{aligned} &①\quad 要求每个积分有且仅有一个奇点\\ &②\quad \left\{ \begin{aligned} \int_1^{+\infty}\frac{1}{x^p}\left\{ \begin{aligned} &p>1时,&收敛\\ &p\leq1,&发散 \end{aligned} \right. \qquad&(大的喜欢大的)\\ \\ \int_0^1\frac{1}{x^p}\left\{ \begin{aligned} &0<p<1时,&收敛\\ &p\geq1,&发散 \end{aligned} \right. \qquad&(小的喜欢小的) \end{aligned} \right. \end{aligned} amp;①要求每个积分有且仅有一个奇点amp;②⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧∫1+∞xp1{amp;p>1时,amp;p≤1,amp;收敛amp;发散∫01xp1{amp;0<p<1时,amp;p≥1,amp;收敛amp;发散amp;(大的喜欢大的)amp;(小的喜欢小的)
其他
1 、 s i n x 或 c o s x 面 积 1、sinx或cosx面积 1、sinx或cosx面积
2 、 积 分 中 值 定 理 ∫ a b f ( x ) d x = A , 则 f ( ξ ) = ∫ a b f ( x ) d x b − a = A b − a 2、积分中值定理\\ \int_a^bf(x)dx=A,则f(\xi)=\frac{\int_a^bf(x)dx}{b-a}=\frac{A}{b-a} 2、积分中值定理∫abf(x)dx=A,则f(ξ)=b−a∫abf(x)dx=b−aA
四、三角函数相关
相互转化
1 + t a n 2 x = s e c 2 x 1 + c o t 2 x = c s c 2 x 1+tan^2x=sec^2x\\ 1+cot^2x=csc^2x\\ 1+tan2x=sec2x1+cot2x=csc2x
s i n 2 x = 2 s i n x c o s x c o s 2 x = c o s 2 x − s i n 2 x = 1 − 2 s i n 2 x = 2 c o s 2 x − 1 sin2x=2sinxcosx\\ \begin{aligned} cos2x&=cos^2x-sin^2x\\ &=1-2sin^2x\\ &=2cos^2x-1\\ \end{aligned} sin2x=2sinxcosxcos2x=cos2x−sin2x=1−2sin2x=2cos2x−1
s
i
n
3
x
=
−
4
s
i
n
3
x
+
3
s
i
n
x
c
o
s
3
x
=
4
c
o
s
3
x
−
3
c
o
s
x
sin3x=-4sin^3x+3sinx\\ cos3x=4cos^3x-3cosx\\
sin3x=−4sin3x+3sinxcos3x=4cos3x−3cosx
s
i
n
2
x
=
1
2
(
1
−
c
o
s
2
x
)
c
o
s
2
x
=
1
2
(
1
+
c
o
s
2
x
)
sin^2x=\frac{1}{2}(1-cos2x)\\ cos^2x=\frac{1}{2}(1+cos2x)\\
sin2x=21(1−cos2x)cos2x=21(1+cos2x)
变角
s i n ( π ± x ) = ∓ s i n x c o s ( π ± x ) = − c o s x s i n ( π 2 ± x ) = c o s x c o s ( π 2 ± x ) = ∓ s i n x sin(\pi\pm x)=\mp sinx\\ cos(\pi\pm x)=-cosx\\ sin(\frac{\pi}{2}\pm x)=cosx\\ cos(\frac{\pi}{2}\pm x)=\mp sinx\\ sin(π±x)=∓sinxcos(π±x)=−cosxsin(2π±x)=cosxcos(2π±x)=∓sinx
a s i n x + b c o s x = a 2 + b 2 s i n ( x + a r c t a n b a ) asinx+bcosx=\sqrt{a^2+b^2}sin(x+arctan\frac{b}{a})\\ asinx+bcosx=a2+b2sin(x+arctanab)
万能公式(不常用)
令 u = t a n x 2 令u=tan\frac{x}{2} 令u=tan2x
s i n x = 2 t a n x 2 1 + t a n 2 x 2 = 2 u 1 + u 2 sinx=\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{2u}{1+u^2} sinx=1+tan22x2tan2x=1+u22u
c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 = 1 − u 2 1 + u 2 cosx=\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{1-u^2}{1+u^2} cosx=1+tan22x1−tan22x=1+u21−u2
t a n x = 2 t a n x 2 1 − t a n 2 x 2 = 2 u 1 − u 2 tanx=\frac{2tan\frac{x}{2}}{1-tan^2\frac{x}{2}}=\frac{2u}{1-u^2} tanx=1−tan22x2tan2x=1−u22u
一 般 用 于 解 ∫ 1 a + s i n x d x 、 ∫ 1 a + c o s x d x 、 ∫ 1 a + s i n x + c o s x d x 一般用于解 \int{\frac{1}{a+sinx}}dx 、 \int{\frac{1}{a+cosx}}dx 、 \int{\frac{1}{a+sinx+cosx}}dx 一般用于解∫a+sinx1dx、∫a+cosx1dx、∫a+sinx+cosx1dx
步 骤 : ① 令 u = t a n x 2 , 则 d x = 2 1 + u 2 d u ② s i n x = 2 u 1 + u 2 、 c o s x = 1 − u 2 1 + u 2 \begin{aligned} 步骤:&①\quad 令u=tan\frac{x}{2},则dx=\frac{2}{1+u^2}du\\ &②\quad sinx=\frac{2u}{1+u^2}、cosx=\frac{1-u^2}{1+u^2}\\ \end{aligned} 步骤:①令u=tan2x,则dx=1+u22du②sinx=1+u22u、cosx=1+u21−u2
若 是 不 定 积 分 , 最 后 别 忘 代 回 x 若是不定积分,最后别忘代回 x 若是不定积分,最后别忘代回x
和差角公式
sin ( α + β ) = sin α cos β + cos α sin β sin ( α − β ) = sin α cos β − cos α sin β cos ( α + β ) = cos α cos β − sin α sin β cos ( α − β ) = cos α cos β + sin α sin β tan ( α + β ) = tan α + tan β 1 − tan α tan β tan ( α − β ) = tan α − tan β 1 + tan α tan β \sin (\alpha+\beta) = \sin \alpha\cos \beta+\cos \alpha\sin \beta \\ \sin (\alpha-\beta) = \sin \alpha \cos \beta-\cos \alpha \sin \beta \\ \cos (\alpha+\beta) =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\ \cos (\alpha-\beta) = \cos \alpha\cos \beta+\sin \alpha \sin \beta \\ \tan (\alpha+\beta) = \frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\ \tan (\alpha-\beta) = \frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} sin(α+β)=sinαcosβ+cosαsinβsin(α−β)=sinαcosβ−cosαsinβcos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβtan(α+β)=1−tanαtanβtanα+tanβtan(α−β)=1+tanαtanβtanα−tanβ
积化和差(不常用)
sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α − β ) ] \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin(\alpha-\beta)] \\ \cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin(\alpha-\beta)] \\ \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos(\alpha-\beta)] \\ \sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(α−β)]cosαsinβ=21[sin(α+β)−sin(α−β)]cosαcosβ=21[cos(α+β)+cos(α−β)]sinαsinβ=−21[cos(α+β)−cos(α−β)]
和差化积(不常用)
sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = − 2 sin α + β 2 sin α − β 2 \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ sinα+sinβ=2sin2α+βcos2α−βsinα−sinβ=2cos2α+βsin2α−βcosα+cosβ=2cos2α+βcos2α−βcosα−cosβ=−2sin2α+βsin2α−β
特 殊 方 法 : 记 “ 帅 ” = s i n x “ 哥 ” = c o s x 帅 + 帅 = 帅 哥 帅 − 帅 = 哥 帅 哥 + 哥 = 哥 哥 哥 − 哥 = 负 嫂 嫂 特殊方法:\\记 “帅”=sinx \quad “哥”=cosx\\ 帅+帅=帅哥\\ 帅-帅=哥帅\\ 哥+哥=哥哥\\ 哥-哥=负嫂嫂\\ 特殊方法:记“帅”=sinx“哥”=cosx帅+帅=帅哥帅−帅=哥帅哥+哥=哥哥哥−哥=负嫂嫂
五、不等式
∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ; ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ |a\pm b|\leq|a|+|b|;||a|-|b||\leq |a-b| ∣a±b∣≤∣a∣+∣b∣;∣∣a∣−∣b∣∣≤∣a−b∣
a b ≤ a + b 2 ≤ a 2 + b 2 2 \sqrt{ab}\leq\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}} ab≤2a+b≤2a2+b2
a b c 3 ≤ a + b + c 3 \sqrt[3]{abc}\leq\frac{a+b+c}{3} 3abc≤3a+b+c
s i n x < x < t a n x ( 0 < x < π 2 ) sinx<x<tanx \qquad (0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π)
a r c t a n x < x < a c r s i n x ( 0 < x < 1 ) arctanx<x<acrsinx \qquad (0<x<1) arctanx<x<acrsinx(0<x<1)
e x ≥ x + 1 x − 1 ≥ l n x e^x\geq x+1 \qquad \qquad x-1 \ge lnx ex≥x+1x−1≥lnx
1 1 + x ≤ l n ( 1 + 1 x ) ≤ 1 x \frac{1}{1+x} \le ln(1+\frac{1}{x}) \leq \frac{1}{x} 1+x1≤ln(1+x1)≤x1
六、多元函数

偏导存在性、可微性

结论:
1 、 f ( x , y ) 为 常 数 ⇔ ∂ f ∂ x ≡ ∂ f ∂ y ≡ 0 ⇔ d f ( x , y ) ≡ 0 1、f(x,y)为常数 \quad \Leftrightarrow \quad \frac{\partial f}{\partial x} \equiv \frac{\partial f}{\partial y} \equiv 0 \quad \Leftrightarrow \quad df(x,y)\equiv 0 1、f(x,y)为常数⇔∂x∂f≡∂y∂f≡0⇔df(x,y)≡0
雅可比:
设 : { a F ( x , y , z ) = 0 , G ( x , y , z ) = 0 , 当 满 足 ∂ ( F , G ) ∂ ( y , z ) ≠ 0 时 , d y d x = − ∂ ( F , G ) ∂ ( x , z ) ∂ ( F , G ) ∂ ( y , z ) d z d x = − ∂ ( F , G ) ∂ ( y , x ) ∂ ( F , G ) ∂ ( y , z ) 设:\left\{ \begin{aligned} aF(x,y,z)=0, \\G(x,y,z)=0, \end{aligned} \right. 当满足\frac{\partial(F,G)}{\partial(y,z)}\ne 0时,\\ \frac{dy}{dx}=-\frac{\frac{\partial(F,G)}{\partial(\color{red}x\color{black},z)}}{\frac{\partial(F,G)}{\partial(\color{red}y\color{black},z)}} \qquad \frac{dz}{dx}=-\frac{\frac{\partial(F,G)}{\partial(y,\color{red}x\color{black})}}{\frac{\partial(F,G)}{\partial(y,\color{red}z\color{black})}} 设:{aF(x,y,z)=0,G(x,y,z)=0,当满足∂(y,z)∂(F,G)=0时,dxdy=−∂(y,z)∂(F,G)∂(x,z)∂(F,G)dxdz=−∂(y,z)∂(F,G)∂(y,x)∂(F,G)
七、二重积分
对称性
①普通对称性:
若 D 关 于 y = x 对 称 , 则 : ∬ D f ( x , y ) d σ = { 2 ∬ D 1 f ( x , y ) d σ , f ( x , y ) = f ( y , x ) 0 , f ( x , y ) = − f ( y , x ) ( D 1 是 D 关 于 x 对 称 的 半 个 部 分 ) \begin{aligned} &若D关于y=x对称,则:\\ &\iint _Df(x,y)d\sigma = \left\{ \begin{aligned} &2\iint_{D_1} f(x,y)d\sigma,&f(x,y)=f(y,x)\\ &0,&f(x,y)=-f(y,x) \end{aligned} \right. \\ (&D_1是D关于x对称的半个部分) \end{aligned} (若D关于y=x对称,则:∬Df(x,y)dσ=⎩⎪⎨⎪⎧2∬D1f(x,y)dσ,0,f(x,y)=f(y,x)f(x,y)=−f(y,x)D1是D关于x对称的半个部分)
②轮换对称性 :
若 将 D 中 x , y 对 调 后 , D 不 变 , 则 有 则 : I = ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \begin{aligned} &若将D中x,y对调后,D不变,则有则:\\ &I=\iint _Df(x,y)d\sigma=\iint _Df(y,x)d\sigma \end{aligned} 若将D中x,y对调后,D不变,则有则:I=∬Df(x,y)dσ=∬Df(y,x)dσ

问:谁动了你的面包?答:没人动 ——宇哥
八、微分方程
结论
1 、 如 果 y 1 , y 2 , y 3 是 二 阶 非 齐 次 线 性 微 分 方 程 的 3 个 解 , 则 : 当 且 仅 当 a + b + c = 1 时 , a y 1 + b y 2 + c y 3 是 该 方 程 的 通 解 1、如果y_1,y_2,y_3是二阶非齐次线性微分方程的3个解, \\ 则:当且仅当a+b+c=1时,ay_1+by_2+cy_3是该方程的通解 1、如果y1,y2,y3是二阶非齐次线性微分方程的3个解,则:当且仅当a+b+c=1时,ay1+by2+cy3是该方程的通解
九、各种应用公式
1.面积
直 角 坐 标 : S = ∫ a b ∣ f ( x ) − g ( x ) ∣ d x 极 坐 标 : S = ∫ α β 1 2 ∣ r 2 2 ( θ ) − r 1 2 ( θ ) ∣ d θ 直角坐标:S=\int_a^b{|f(x)-g(x)|}dx\\ 极坐标:S=\int_\alpha^\beta \frac{1}{2}{|r_2^2(\theta)-r_1^2(\theta)|}d\theta \\ 直角坐标:S=∫ab∣f(x)−g(x)∣dx极坐标:S=∫αβ21∣r22(θ)−r12(θ)∣dθ
2.平面曲线弧长
直 角 坐 标 : s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x 参 数 方 程 : s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t 极 坐 标 方 程 : s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ 直角坐标:s=\int_a^b{\sqrt{1+[y'(x)]^2}}dx\\ 参数方程:s=\int_\alpha^\beta{\sqrt{[x'(t)]^2+[y'(t)]^2}}dt\\ 极坐标方程:s=\int_\alpha^\beta{\sqrt{[r(\theta)]^2+[r'(\theta)]^2}}d\theta\\ 直角坐标:s=∫ab1+[y′(x)]2dx参数方程:s=∫αβ[x′(t)]2+[y′(t)]2dt极坐标方程:s=∫αβ[r(θ)]2+[r′(θ)]2dθ
3.旋转体体积
绕 x 轴 : V x = ∫ a b π y 2 ( x ) d x 绕 y 轴 : V y = ∫ a b 2 π x ∣ y ( x ) ∣ d x ( 柱 壳 法 ) 二 重 积 分 法 : V = 2 π ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) r d y ( r 为 旋 转 半 径 ) 绕x轴:V_x=\int_a^b{\pi y^2(x)}dx\\ 绕y轴:V_y=\int_a^b{2\pi x|y(x)|}dx \quad(柱壳法)\\ 二重积分法:V=2\pi\int_a^bdx\int_{y_1(x)}^{y_2(x)}rdy \quad (r为旋转半径) 绕x轴:Vx=∫abπy2(x)dx绕y轴:Vy=∫ab2πx∣y(x)∣dx(柱壳法)二重积分法:V=2π∫abdx∫y1(x)y2(x)rdy(r为旋转半径)
一定要理解,光背公式没用。另:推荐学习二重积分法求旋转体体积。
4.旋转曲面侧面积(x轴)
直 角 坐 标 : S x = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x 参 数 方 程 : S x = 2 π ∫ α β ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t 极 坐 标 : S x = 2 π ∫ α β r ( θ ) sin θ [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ 直角坐标:S_x=2\pi \int_a^b{|y(x)|\sqrt{1+[y'(x)]^2}}dx\\ 参数方程:S_x=2\pi \int_\alpha^\beta{|y(t)|\sqrt{[x'(t)]^2+[y'(t)]^2}}dt\\ 极坐标:S_x=2\pi \int_\alpha^\beta{r(\theta)\sin\theta\sqrt{[r(\theta)]^2+[r'(\theta)]^2}}d\theta 直角坐标:Sx=2π∫ab∣y(x)∣1+[y′(x)]2dx参数方程:Sx=2π∫αβ∣y(t)∣[x′(t)]2+[y′(t)]2dt极坐标:Sx=2π∫αβr(θ)sinθ[r(θ)]2+[r′(θ)]2dθ
5.形心:
x ˉ = ∬ x d σ ∬ d σ y ˉ = ∬ y d σ ∬ d σ \bar{x}=\frac{\iint{x}d\sigma}{\iint d\sigma} \qquad \bar{y}=\frac{\iint{y}d\sigma}{\iint d\sigma} xˉ=∬dσ∬xdσyˉ=∬dσ∬ydσ
利 用 形 心 求 特 殊 二 重 积 分 : { ∬ x d σ = x ˉ ⋅ S D ∬ y d σ = y ˉ ⋅ S D ( 其 中 D 的 形 心 ( x ˉ , y ˉ ) ) 利用形心求特殊二重积分: \left\{ \begin{aligned} {\iint{x}d\sigma}=\bar{x}\cdot S_D \quad \\{\iint{y}d\sigma}=\bar{y}\cdot S_D \quad \end{aligned} \right. (其中D的形心(\bar{x},\bar{y})) 利用形心求特殊二重积分:⎩⎪⎪⎨⎪⎪⎧∬xdσ=xˉ⋅SD∬ydσ=yˉ⋅SD(其中D的形心(xˉ,yˉ))
6.质心:
① x ˉ = ∫ x ρ ( x ) d x ∫ ρ ( x ) d x ( ρ ( x ) 为 线 密 度 ) ② x ˉ = ∫ x ( t ) d s ∫ d s y ˉ = ∫ y ( t ) d s ∫ d s ( 参 数 方 程 , d s 为 弧 微 分 ) \begin{aligned}&①\quad \bar{x}=\frac{\int{x\rho(x)}dx}{\int \rho(x)dx} \qquad (\rho(x)为线密度)\\\\ &② \quad\bar{x}=\frac{\int{x(t)}ds}{ \int ds} \quad \bar{y}=\frac{\int{y(t)}ds}{ \int ds} \quad (参数方程,ds为弧微分) \end{aligned} ①xˉ=∫ρ(x)dx∫xρ(x)dx(ρ(x)为线密度)②xˉ=∫ds∫x(t)dsyˉ=∫ds∫y(t)ds(参数方程,ds为弧微分)
7.曲率和曲率半径:
① K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 ( K 越 大 , R 越 小 , 弧 度 越 小 ) ② R = 1 K = ( 1 + y ′ 2 ) 3 2 ∣ y ′ ′ ∣ \begin{aligned} &①\quad K=\frac{|y''|}{(1+y'^2)^\frac{3}{2}} \quad (K越大,R越小,弧度越小)\\ &②\quad R=\frac{1}{K}=\frac{(1+y'^2)^\frac{3}{2}}{|y''|} \end{aligned} ①K=(1+y′2)23∣y′′∣(K越大,R越小,弧度越小)②R=K1=∣y′′∣(1+y′2)23
K[f1]大于K[f2]
8.平均值:
f ˉ = 1 b − a ∫ a b f ( x ) d x \bar{f}=\frac{1}{b-a}\int_a^b{f(x)}dx fˉ=b−a1∫abf(x)dx
8.反函数:
x y ′ = 1 y x ′ x y y ′ ′ = − y x x ′ ′ y x ′ 3 x'_y=\frac{1}{y'_x} \qquad x''_{yy}=-\frac{y''_{xx}}{{y'_x}^3} xy′=yx′1xyy′′=−yx′3yxx′′
9.面积、体积相关:
S 球 = 4 π R 2 V 球 = 4 3 π R 3 S_球=4\pi R^2 \qquad V_球=\frac{4}{3}\pi R^3 S球=4πR2V球=34πR3
S 椭 圆 = π a b S_{椭圆}=\pi ab S椭圆=πab
10.点到线的距离公式:
D = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 D=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} D=A2+B2∣Ax0+By0+C∣
11.切线、法线、截距
设 y = y ( x ) 可 导 且 y ′ ( x ) ≠ 0 , 则 ① 切 线 方 程 : Y − y = y ′ ( x ) ( X − x ) X = 0 时 , y 轴 截 距 = y − x y ′ ( x ) Y = 0 时 , x 轴 截 距 = x − y y ′ ( x ) ② 法 线 方 程 : Y − y = − 1 y ′ ( x ) ( X − x ) X = 0 时 , y 轴 截 距 = y + x y ′ ( x ) Y = 0 时 , x 轴 截 距 = x + y y ′ ( x ) \begin{aligned} &设y=y(x)可导且y'(x)\ne 0,则 \\ ① \quad &切线方程:Y-y=y'(x)(X-x) \\ &X=0时,y轴截距=y-xy'(x) \\ &Y=0时,x轴截距=x-\frac{y}{y'(x)}\\ ② \quad &法线方程:Y-y=-\frac{1}{y'(x)}(X-x) \\ &X=0时,y轴截距=y+\frac{x}{y'(x)} \\ &Y=0时,x轴截距=x+yy'(x) \end{aligned} ①②设y=y(x)可导且y′(x)=0,则切线方程:Y−y=y′(x)(X−x)X=0时,y轴截距=y−xy′(x)Y=0时,x轴截距=x−y′(x)y法线方程:Y−y=−y′(x)1(X−x)X=0时,y轴截距=y+y′(x)xY=0时,x轴截距=x+yy′(x)
十、复合函数
1.奇偶性:
对 于 f ( g ( x ) ) : 内 偶 则 偶 , 内 奇 同 外 。 对于f(g(x)):内偶则偶,内奇同外。 对于f(g(x)):内偶则偶,内奇同外。
2.连续性:
唯 一 确 定 的 结 论 : 若 g ( x ) 在 x 0 处 连 续 , f ( u ) 在 u 0 = g ( x 0 ) 处 连 续 , 则 f ( g ( x ) ) 在 x 0 处 连 续 \begin{aligned}\\ &唯一确定的结论:\\ &若g(x)在x_0处连续,f(u)在u_0=g(x_0)处连续,则f(g(x))在x_0处连续 \end{aligned} 唯一确定的结论:若g(x)在x0处连续,f(u)在u0=g(x0)处连续,则f(g(x))在x0处连续
十一、隐藏条件
光滑曲线:处处连续且可导