面试题8—求“旋转数组”的最小数字

本文介绍了一种在旋转数组中查找最小值的高效算法。旋转数组由两部分组成,前部分大于或等于后部分,最小值即为分界点。通过二分查找法,不断缩小搜索范围,直到找到最小值。当数组中有重复元素时,采用顺序查找。

旋转数组:把一个数组最开始的若干个数字搬到数组的末尾,我们称之为数组的旋转;例如:{3,4,5,1,2}为{1,2,3,4,5}的一个旋转

解题思路:旋转的数组可以看成是两个排好序的子数组,且前面的子数组大于或者等于后面的子数组,最小的元素是两个数组的分界线;(利用二分查找法一样)

(第一步):用两个指针分别指向数组的第一个元素和最后一个元素

(第二步):找到数组的中间元素,如果该数组位于前面的递增数组,那么它应该大于或者等于第一个指针指向的元素,此时该最小的元素应该位于该中间元素的后面

(第三步):把第一个指针指向该中间元素,以这种方式缩小查找范围

(第四步):找到数组的中间元素,如果该数组位于后面的递增数组,那么它应该小于或者等于第二个指针指向的元素,此时该最小的元素应该位于该中间元素的前面

(第五步):把第二个指针指向该中间元素,以这种方式缩小查找范围

int Min(int *numbers,int length)
{
    if(numbers=NULL||length<=0)
    throw new std::exception("Invalid parameters");
    
    int index1=0,index2=length-1;
    int indexMid=index1;
    while(numbers[index1]>=numbers[index2])
    {
    
    if(index2-index1==1)
    {
            indexMid=index2;
            break; 
    }
    
    indexMid=(index1+index2)/2;
    if(numbers[index1]==numbers[indexMid]&&numbers[index1]==numbers[index2])
            return MinInOrder(numbers,index1,index2);
    if(numbers[indexMid]>=numbers[index1])
          index1=indexMid;
    if(numbers[indexMid]<=numbers[index1])
                 index2=indexMid;
    
    
    }
    
    return numbers[indexMid];




}


//依顺序查找
int MinInOrder(int *numbers,int index1,int index2)
{

    int result=numbers[index1];
    for(int i=index+1;i<=index2;i++)
    {
    
    if(result>numbers[i])
    result=numbers[i];
   
    }
    
    return result;


}

 

 

 

 

转载于:https://my.oschina.net/u/1176909/blog/307755

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值