【图像处理】windows 10 + vs2015+ opencv3.0.0 +附加模块opencv_contrib编译和配置

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/chentravelling/article/details/59540828

0.前言

将基于低版本opencv(比如2.3.1)的程序,在vs2015+opencv3.0的环境下编译会报错:
“未声明的标识符:SiftFeatureDetector ”
“未声明的标识符BruteForceMatcher”

查阅才知,sift、surf等等已经被移到opencv_contrib模块,如果需要在高版本opencv中使用到opencv_contrib模块,则需要自己进行编译。其编译和配置流程,在github.com:opencv/opencv_contrib的README里写了:
这里写图片描述
那么现在开始自行编译和配置吧。根据本文内容,成功率应该是99.99%,中途可能会遇到很多问题,我也会再总结一篇。
通过不懈努力,最终成果如下:
这里写图片描述

一.准备:系统环境和工具

1)系统:win 10 64位
2)opencv:3.0.0
3)opencv_contrib:3.0.0
4)visual studio:2015
5)CMake:3.8.0

1.安装CMake3.8.0

根据使用的操作系统选择相应的版本进行下载和安装即可(点击下载):
这里写图片描述

2.下载opencv3.0.0

点击到官网下载

3.安装opencv3.0.0

将opencv安装到指定目录,比如:H:\opencv

4.下载opencv_contrib3.0.0

附加模块opencv_contrib最好下载与opencv为同一版本的。
这里写图片描述

5.解压opencv_contrib 3.0.0

将下载好的附加模块 opencv_contrib-3.0.0.zip 解压到指定位置,比如:C:\Users\september\Desktop\opencv_contrib-3.0.0
解压后,opencv_contrib-3.0.0的结构目录如下:

这里写图片描述

二.编译

1.打开cmake

2.输入opencv源文件路径

在where is the source code输入opencv地址/sources地址, 比如:H:/opencv/sources

3.输入保存编译结果的路径

在where to build the libraries输入保存编译结果的地址, 比如:H:/opencv/mybuild
比如下图:

这里写图片描述

4.第一次编译

(1)点击configure,选择本机的编译器,最后四位数字才代表vs的版本,比如图中的2015,代表的是visual studio 2015。
这里写图片描述
(2)点击finish,开始第一次编译。
如果编译器的版本选错,第一次编译时会出错:
no cmake_c_compiler could be found.
no cmake_cxx_compiler could be found.

第一次编译完成后会显示编译opencv所需要的参数,如图:
这里写图片描述

5.第二次编译

(1)在参数列表中,将Name为OPENCV_EXTRA_MODULES_PATH的Value设置为opencv_contrib-3.0.0的路径/modules,例如:C:/Users/september/Desktop/opencv_contrib-3.0.0/modules
可以在search栏中搜索OPENCV_EXTRA_MODULES_PATH变量,如下图。
这里写图片描述
(2)点击configure,直到configure done。
重点:configure done后,一定要检查一下参数列表,如果参数列表还有红色标记的条目,就再尝试几次configure,直到所有条目都是白色为止。

可能错误1:unknown cmake command "ocv_define_module"之类的,即存在未知的命令。
原因:可能是opencv版本和opencv_contrib版本不一致,换成一致的就行(本人遇到这个问题的时候,是这样解决的)

可能错误2:在ICV: Downloading ippicv_windows_20141027.zip...时报错
    CMake Error at 3rdparty/ippicv/downloader.cmake:97 (message):
    Call Stack (most recent call first):
    3rdparty/ippicv/downloader.cmake:108 (_icv_downloader)cmake/OpenCVFindIPP.cmake:212 (include)cmake/OpenCVFindLibsPerf.cmake:12 (include)
    CMakeLists.txt:454 (include)
    解决:手动下载ippicv_windows_20141027.zip,保存在opencv/sources/3rdparty/ippicv/downloads/windows-b59f865d1ba16e8c84124e19d78eec57


(3)点击generate,直到generate done
generate done后,会在where to build the binaries中设置的目录中生成编译结果。
这里写图片描述

(4)【该步骤是个人建议】检查一下附加模版是否成功编译并加入到opencv中。如果附加模块opencv_contrib并未成功编译到opencv中,那后面再忙活都是白干。因为后面的步骤都比较费时,而且最终到了使用SIFT的时候才会发现附加模块增加失败,而且难以锁定原因,必须返回来逐步检查。所以个人建议不要跳过这一步,很简单。
如下图,进入where to build the binaries中设置的目录,然后进入modules,查看一下是否有xfeatures2d这类的文件。这类文件是属于附加模版opencv_contrib的,如果没有,请检查一下CMake中参数列表里,OPENCV_EXTRA_MODULES_PATH的Value是否为opencv_contrib-3.0.0的路径/modules,如果不是,请重新设置OPENCV_EXTRA_MODULES_PATH的Value为opencv_contrib-3.0.0的路径/modules,然后重新configure、generate。如果附加模块opencv_contrib并未成功编译到opencv中,那后面就够忙活的了,后面更费时,而且最终会配置失败,还难以想到
这里写图片描述

三.生成库文件

1.打开OpenCV.sln

方式1:在CMake界面点击open project
方式2:进入where to build the binaries中设置的路径下找到OpenCV.sln,并点击即可,此时本机的vs会打开OpenCV项目方案。

2.生成.dll和.lib文件

OpenCV.sln项目加载完后(项目个数应该在130~140左右),右键点击CMakeTargets,然后选择生成。这步完成后,在where to build the binaries中设置的路径下会多一个install文件,其中就是我们需要的配置文件了。

这里写图片描述

四.配置

接下来的配置,就和以往配置opencv的流程一样,只是现在是使用自己编译的包含了附加模块的opencv。

1.系统环境变量

计算机-环境变量-path中增加:where to build the binaries中设置的路径\install\x86\vc14\bin
这里写图片描述

2.配置新建的工程

(1)VC++目录-包含目录

<where to build the binaries中设置的路径>\install\include
<where to build the binaries中设置的路径>\install\include\opencv
<where to build the binaries中设置的路径>\install\include\opencv2

如下图:
这里写图片描述
(2)VC++目录-库目录

<where to build the binaries中设置的路径>\install\x86\vc14\lib
<where to build the binaries中设置的路径>\install\x86\vc14\staticlib

如下图:

这里写图片描述
(3)链接器-输入-附加依赖项:
可能因为不同的人编译时添加的附加模块不一样而造成最终的.lib不一样,所以附加依赖项里添加的.lib文件都需要出现在:< where to build the binaries中设置的路径>\install\x86\vc14\lib中,否则在编译程序的时候会出现XXX.lib加载失败、丢失、找不到之类的错误,因为这个.lib根本不存在,但是可能被添加在附加依赖项里了。比如我的:
opencv_bgsegm300d.lib
opencv_calib3d300d.lib
opencv_ccalib300d.lib
opencv_core300d.lib
opencv_datasets300d.lib
opencv_face300d.lib
opencv_features2d300d.lib
opencv_flann300d.lib
opencv_hal300d.lib
opencv_highgui300d.lib
opencv_imgcodecs300d.lib
opencv_imgproc300d.lib
opencv_line_descriptor300d.lib
opencv_ml300d.lib
opencv_objdetect300d.lib
opencv_optflow300d.lib
opencv_photo300d.lib
opencv_reg300d.lib
opencv_rgbd300d.lib
opencv_saliency300d.lib
opencv_shape300d.lib
opencv_stitching300d.lib
opencv_superres300d.lib
opencv_surface_matching300d.lib
opencv_text300d.lib
opencv_tracking300d.lib
opencv_ts300d.lib
opencv_video300d.lib
opencv_videoio300d.lib
opencv_videostab300d.lib
opencv_xfeatures2d300d.lib
opencv_ximgproc300d.lib
opencv_xobjdetect300d.lib
opencv_xphoto300d.lib

五.测试

前面的四大部分完成了opencv和opencv_contrib的编译和配置,也完成了项目的配置,现在就是检验的时候了。

1.添加源码

在项目源文件中新建main.cpp:

#include <iostream>  
#include <opencv2\opencv.hpp>  
#include <opencv2\xfeatures2d.hpp>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;


int main()
{
    Mat firstImage = imread("26.jpg");
    Mat secondImage = imread("27.jpg");
    if (firstImage.empty() || secondImage.empty())
    {
        cout << "error" << endl;
        return 0;
    }

    //resize(firstImage,firstImage,Size(800,1000),0,0,1);  
    //resize(secondImage,secondImage,Size(800,1000),0,0,1);  

    ////////////////////////////////////////////////////////////////////////////////  
    //第一步:获取SIFT特征  
////////////////////////////////////////////////////////////////////////////////  
    //difine a sift detector  
    Ptr<SIFT> sift = SIFT::create();
    //sift->detect();
    //SiftFeatureDetector siftDetector;
    //store key points  
    vector<KeyPoint> firstKeypoint, secondKeypoint;
    //detect image with SIFT,get key points  
    sift->detect(firstImage, firstKeypoint);
    sift->detect(secondImage, secondKeypoint);
    Mat firstOutImage, secondOutImage;
    //draw key points at the out image and show to the user  
    drawKeypoints(firstImage, firstKeypoint, firstOutImage, Scalar(255, 0, 0));
    drawKeypoints(secondImage, secondKeypoint, secondOutImage, Scalar(0, 255, 0));
    imshow("first", firstOutImage);
    imshow("second", secondOutImage);
    Mat firstDescriptor, secondDescriptor;
    sift->compute(firstImage,firstKeypoint,firstDescriptor);
    sift->compute(secondImage,secondKeypoint,secondDescriptor);
    Ptr<DescriptorMatcher > matcher = DescriptorMatcher::create("BruteForce");
    Mat masks;
    vector<DMatch> matches;
    matcher->match(firstDescriptor, secondDescriptor, matches, masks);


    ////////////////////////////////////////////////////////////////////////////////  
    //第二步:RANSAC方法剔除outliner  
////////////////////////////////////////////////////////////////////////////////  
    Mat matcheImage;
    //将vector转化成Mat  
    Mat firstKeypointMat(matches.size(), 2, CV_32F), secondKeypointMat(matches.size(), 2, CV_32F);
    for (int i = 0; i<matches.size(); i++)
    {
        firstKeypointMat.at<float>(i, 0) = firstKeypoint[matches[i].queryIdx].pt.x;
        firstKeypointMat.at<float>(i, 1) = firstKeypoint[matches[i].queryIdx].pt.y;
        secondKeypointMat.at<float>(i, 0) = secondKeypoint[matches[i].trainIdx].pt.x;
        secondKeypointMat.at<float>(i, 1) = secondKeypoint[matches[i].trainIdx].pt.y;
    }
    //Calculate the fundamental Mat;  
    vector<uchar> ransacStatus;
    Mat fundamentalMat = findFundamentalMat(firstKeypointMat, secondKeypointMat, ransacStatus, FM_RANSAC);
    cout << fundamentalMat << endl;
    //Calculate the number of outliner points;  
    int outlinerCount = 0;
    for (int i = 0; i<matches.size(); i++)
    {
        if (ransacStatus[i] == 0)
        {
            outlinerCount++;
        }
    }
    //Calculate inliner points;  
    vector<Point2f> firstInliner;
    vector<Point2f> secondInliner;
    vector<DMatch> inlinerMatches;
    int inlinerCount = matches.size() - outlinerCount;
    firstInliner.resize(inlinerCount);
    secondInliner.resize(inlinerCount);
    inlinerMatches.resize(inlinerCount);
    int index = 0;
    for (int i = 0; i<matches.size(); i++)
    {
        if (ransacStatus[i] != 0)
        {
            firstInliner[index].x = firstKeypointMat.at<float>(i, 0);
            firstInliner[index].y = firstKeypointMat.at<float>(i, 1);
            secondInliner[index].x = secondKeypointMat.at<float>(i, 0);
            secondInliner[index].y = secondKeypointMat.at<float>(i, 1);
            inlinerMatches[index].queryIdx = index;
            inlinerMatches[index].trainIdx = index;
            index++;
        }
    }
    vector<KeyPoint> inlinerFirstKeypoint(inlinerCount);
    vector<KeyPoint> inlinerSecondKeypoint(inlinerCount);
    KeyPoint::convert(firstInliner, inlinerFirstKeypoint);
    KeyPoint::convert(secondInliner, inlinerSecondKeypoint);
    //cout<<fundamentalMat<<endl;  
    //select 50 keypoints  
    //matches.erase(matches.begin()+50,matches.end());  
    //inlinerMatches.erase(inlinerMatches.begin()+50,inlinerMatches.end());  
    drawMatches(firstImage, inlinerFirstKeypoint, secondImage, inlinerSecondKeypoint, inlinerMatches, matcheImage);
    imshow("ransacMatches", matcheImage);
    drawMatches(firstImage, firstKeypoint, secondImage, secondKeypoint, matches, matcheImage);
    imshow("matches", matcheImage);
    waitKey(0);
    return 0;
}

2.运行

这里写图片描述

到此,windows 10 + vs2015+ opencv3.0.0 的环境下,使用opencv_contrib附加模块就完美解决了,SIFT、SURF也能正常使用了。整个编译、配置过程,会遇到各种各样的问题,总之,坚持不懈吧~谁让opencv不是咱自己写的呢~

没有更多推荐了,返回首页