【动态规划】最长递增序列

目录

1、最长连续递增序列

问题描述

2、最长递增序列

问题描述


1、最长连续递增序列

问题描述

给定一个未经排序的整数数组,找到最长且连续的的递增序列。

示例 1:

输入: [1,3,5,4,7]
输出: 3
解释: 最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为5和7在原数组里被4隔开。 

示例 2:

输入: [2,2,2,2,2]
输出: 1
解释: 最长连续递增序列是 [2], 长度为1。

注意:数组长度不会超过10000。

public static int maxLength(int[] nums){
        if(null == nums || nums.length == 0){
            return 0;
        }

        int max = 0;
        int count = 0;

        for(int i = 1; i < nums.length; i++){
            count = nums[i] > nums[i - 1] ? count + 1 : 0;
            if(count > max){
                max = count;
            }
        }

        //加上第一个节点自身
        return max +1;
    }

 

2、最长递增序列

问题描述

给定一个未经排序的整数数组,找到最长的的递增序列。

示例 1:

输入: [1,3,5,4,7]
输出: 3
解释: 最长连续递增序列是 [1,3,5,7]/[1,3,4,7], 长度为4。

采用动态规划,思想类似:【字符串】【动态规划】最长公共子序列问题

public static int maxLength1(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        int[][] tmp = new int[nums.length + 1][nums.length + 1];
        for (int i = 1; i <= nums.length; i++) {
            for (int j = i + 1; j <= nums.length; j++) {
                if (nums[j - 1] > nums[i - 1]) {
                    tmp[i][j] = Math.max(1 + tmp[i - 1][j - 1], tmp[i - 1][j]);
                } else {
                    tmp[i][j] = Math.max(tmp[i - 1][j - 1], tmp[i - 1][j]);
                }
            }
        }

        //加上第一个节点自身
        return tmp[nums.length - 1][nums.length] + 1;
    }
public static int maxLength1(int[] array){
	if(null == array || array.length == 0){
		return 0;
	}

	int max = 1;
	int[] tmp = new int[array.length];
	for(int i = 0; i < array.length; i++){
		tmp[i] = 1;
		for(int j = 0; j < array.length; j++){
			if(array[i] > array[j] && tmp[j] >= tmp[i]){
				tmp[i] = tmp[j] + 1;
			}
		}

		Math.max(max, tmp[i]);
	}

	return max;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值