Openstack学习(2)——Neutron Neutron 的设计目标是实现“网络即服务(Networking as a Service)”。为了达到这一目标,在设计上遵循了基于SDN 实现网络虚拟化的原则,在。
如何让你的网站能通过域名访问 添加域名解析后,就可以通过域名对自己的Web进行访问。不过由于此时 我们还没有为域名配置证书,所以浏览器显示 “不安全”根据自己的Web服务器类型下载证书,笔者用的是 Nginx。本文主要记录如何 实现让自己的网站可以通过域名访问。现在免费证书只能申请3个了。
定时喝水提醒(进阶版) 笔者近十年的体检,总会报一个小问题:肾结石。经常肾结石的朋友应该知道,这毛病除了做碎石手术,主流的治疗方式就是:多喝水。没有完成资质认证(需要每年用公司账户给腾讯打钱)的微信公众号,很多功能受限。然而这种方式存在一个局限性就是,当我们不用电脑的时候,就看不到提醒了。如下,模板内容: 该喝水了!{{name.DATA}}同学。在用户列表可以拿到我们的微信号,稍后发送消息需要用到。于是乎,六年前,笔者写了这么一篇文章——来完成接下来的演示,注册及登陆的地址为。为弥补上述缺点,本文要实现的方案是,
用Gradio做一个ai-chat应用 其实这个小应用的完成,最大的难点是 为上述代码中的 OpenAI(base_url="https://xxxxx/v1/") 设置一个可调通的API地址。上半年国内的大模型还没遍地开花的时候,笔者花巨资购了两台云服务器及给OpenAI充了20$,给身边的亲友给做了一个可使用的ai-chat。由于笔者提供的ai-chat服务,是一个公网可访问的界面。给lanuch()方法,传入auth参数,设置了访问应用所需的账户、密码。,自己编写web后台,找朋友做界面,做出了一个版本。后来Gradio发布了。
如果我忽然嗝屁了,家人怎么继承我的财产 笔者很喜欢的电影《寻梦环游记》有这么一句经典台词:“真正的死亡是世界上没有一个人记得你”。然而,现实中我们所说的“死亡”,其实就是 他再不能与这个世界、与自己在乎的人有新的互动了。本文,笔者想写一写 关于死亡的一个现实问题。
211高校是否都是双一流高校 2017年9月21日,教育部、财政部、国家发展和改革委员会联合发布《关于公布世界一流大学和一流学科建设高校及建设学科名单的通知》,此名单即第一轮“双一流”名单。由于笔者倾向的答案是:"双一流高校"包括211高校。然而笔者在继续查究后发现,人家不在"双一流公告"的真实原因是: 在两份公告发布的时间中间,改名了!从上面的截图看,有三所211高校名称不在"双一流公告"内容中,似乎"双一流高校"包括211高校 这个猜想是不成立的。前段时间,几个985毕业的朋友讨论起了 "211"跟"双一流"关系的话题。
AI模型推理(6)——实战篇(进阶) Triton是Nvidia官方推出的推理服务化框架(简单解释就是 加载你的模型变成别人可以请求的服务)。一开始叫 TensorRT serving,是专门针对TensorRT设计的服务器框架,后来支持了onnxruntime、pytorch、tensorflow等推理后端,变为了triton。
TrainingOperator--PyTorchJob实现机制分析 由Pytorch分布式训练(一)_chenxy02的博客-CSDN博客WORLD_SIZERANKMASTER_PORT和MASTER_ADDR的目的是告诉进程组中负责进程通信协调的核心进程的IP地址和端口。当然如果该进程就是核心进程,它会发现这就是自己。RANK参数是该进程的id,WORLD_SIZE是说明进程组中进程的个数。1、得手工在多个节点上启动多个 python脚本,配置不同的 rank2、如果是在K8S上起多个 pod 进行分布式训练 ,还得解决IP不确定的问题。
Pytorch分布式训练(一) 2023年,训练模型时,使用DDP(DistributedDataParallel)已经成为Pytorch炼丹师的标准技能。本文主要讲述实现Pytorch分布式要做哪些事情,以及如何理解Pytorch分布式训练背后的通信原理(不会很深入)。
AI模型推理(4)—— 认识ServingRuntime ServingRuntime(在中文语境里,笔者经常把它叫做“推理运行时”)是KServe的一个核心概念。本文主要讲解ServingRuntime的概念,并重点介绍Triton模型服务化框架。1、图中C API部分。可以看到Triton支持HTTP/REST和GRPC协议。2、中Model Repository部分。按照Triton的官方文档所述,模型仓库可以是本地的持久化存储介质(磁盘),也可以接入Google Cloud Platform或者AWS S3的模型仓库。
AI模型推理(3)——ModelMesh使用 Kserve提供了“Serverless”和“ModelMesh”两种安装模式。其中Serverless是通过Knative组件实现动态扩缩容等功能。而ModelMesh则是另一种资源开销较小的模式。
AI模型推理(2)—— Kserve入门使用 Kserve 提供一个Kubernetes 自定义资源定义(InferenceService),用于在任意框架上提供机器学习模型服务。它旨在通过为常见的ML框架(如:Tensorflow、XGBoost、Scikit-Learn、PyTorch和ONNX)提供高性能、高度抽象的接口来解决生产上的模型推理场景。它封装了自动缩放、网络、健康检查和服务配置的复杂性,为 ML 部署带来了尖端的服务功能,如:GPU 自动缩放、归零缩放和金丝雀发布等。
使用 boto3 调用 S3 对象存储 更多 boto3支持的方法,参见:https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html?Bucket 是指对象存储上的存储空间,可理解为存放对象的“容器”,一个使用对象存储的用户可以拥有多个Bucket。用户存储在对象存储上的每个文件都是一个 Object,每个Object 有一个键名/健值。我们在调用s3对象存储的代码中使用的“Endpoint”,是指对象存储对外服务的访问域名。
Swagger Editor 的介绍和使用 Swagger Editor 可以帮助开发人员优雅地设计符合 OpenAPI 规范的API接口,是一个可以通过浏览器进行使用的工具。功能如下:编辑:可以在浏览器上基于YAML等语法定义我们的RESTful API,也可以采用 JSON语法查看:Swagger Editor会自动生成一篇排版优美的API文档,并且提供实时预览生成代码:可智能生成服务端或客户端代码,支持 python、golang、java 等主流语言。