- 博客(562)
- 资源 (1)
- 收藏
- 关注
原创 日常生活中常见现象(舞台上干冰造雾等)的解释
为了理解这一物理现象,我们需要了解干冰的特性和它与周围环境相互作用的方式。干冰是固态的二氧化碳,它在常温下会直接从固态升华为气态,这个过程中会吸收大量的热。当干冰被放置在舞台上时,它会迅速升华,并从周围的空气中吸收热量。这个过程导致周围空气的温度迅速下降。随着空气温度的降低,空气中的水蒸气会达到饱和状态,进而凝结成微小的水滴,这些水滴悬浮在空气中就形成了我们看到的“雾”。实际上,这种“雾”是由无数微小的水滴组成的,它们因为太小而能够悬浮在空气中,不立即落下。
2024-12-10 18:45:37
874
原创 DIS研究加速度与力的关系的实验
DIS(Digital Information System)实验,即数字化信息系统实验,是一种运用现代信息技术手段进行的实验方法。在“用DIS研究加速度与力的关系”的实验中,该系统通过传感器、数据采集器和计算机等高科技设备,实现了对实验数据的快速、准确、动态采集和分析处理。
2024-12-09 09:00:22
849
原创 牛顿三定律在非惯性系中使用吗?
牛顿三定律适用于惯性参考系,但在非惯性系中,情况就有所不同。非惯性系是指那些相对于惯性系加速运动的参考系。在非惯性系中,物体除了受到真实的外力作用外,还会受到一些假想(虚拟)的惯性力作用,这使得牛顿三定律的直接应用变得复杂。需要进行具体分析。
2024-12-08 10:02:48
886
原创 标准状态下一个气体分子每秒平均碰撞次数的估算
这当然也意味着,气体分子的平均碰撞次数是与分子种类有关的。这个其实也很容易直观定性地理解:一方面,质量越大的分子在相同温度条件下应该运动速度越低(温度只与分子平均平动动能相关,而相同平均平动动能相等条件下,速度平方与质量成反比);要估算在标准状态(0°C, 1个大气压)下,一个气体分子在1秒内与其他分子的碰撞次数,我们可以使用一些基本的物理和化学原理。其中 ( k ) 是玻尔兹曼常数,( T ) 是绝对温度(以开尔文为单位),( m ) 是气体分子的质量。是气体分子的有效直径,是气体分子的数密度。
2024-12-07 16:55:51
596
原创 遵从大小与距离的n次方成反比的力都是保守力吗?如何证明?
保守力是指在某一力学系统中,如果某种力做功只与系统始末状态的相对位置有关,而与做功路径无关,那么这种力就被称为保守力。这是保守力的核心特征。无论物体沿着何种路径从起点移动到终点,保守力所做的功都是相同的,只取决于起点和终点的位置。保守力可以表示为某个标量场(即势场)的梯度,且这个标量场只与位置有关。这个标量场的负值被称为势,势乘以相应的荷(如电荷、质量等)就是势能。如果物体沿闭合路径绕行一周,保守力对物体所做的功恒为零。
2024-12-03 16:20:01
795
原创 对数函数的底为什么必须要大于0且不为1?
对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数,其形式为ylogaxa0a≠1ylogaxa0a1, 那么y被称为a为底的对数函数。其中,a是对数的底数,x是真数,y是对数的(函数)值。
2024-12-03 13:12:11
243
原创 随机信号处理中,正交,独立,相关等概念的区别与关系
正交对于随机变量:若两个随机变量X和Y的内积(即数学期望E[XY])为0,则称X和Y正交。对于随机信号:若两个随机信号X(t)和Y(t)的互相关函数(即E[X(t1)Y(t2)])恒等于0,则称X(t)和Y(t)正交。独立对于两个随机变量X和Y,若X的有关信息不给出Y的任何信息,并且Y的有关信息也不包含X的任何信息,则称X和Y独立。数学上,这等价于它们的联合概率密度函数等于各自概率密度函数的乘积。等价地,如果两个随机变量X和Y的期望满足EXYEXEYEXYEXEY。
2024-12-02 10:43:34
915
原创 电磁驱动实验中,金属圆盘的转速和磁铁的转速会一样吗?
在电磁驱动实验中,金属圆盘的转速和磁铁的转速会一样吗?本文给出一个原理性解释。并简单介绍作为电磁驱动的一个应用的三相感应电动机的工作原理。
2024-11-30 15:20:37
370
原创 shell中删除一个目录下除某个或者某些文件以外的所有文件和子目录的实现
使用find命令结合-not(或!)选项可以灵活地选择并删除不需要的文件和目录,同时保留特定的文件或目录。这种方法在需要批量删除文件时非常有用,但也需小心操作,避免误删重要数据。
2024-11-30 11:37:01
353
原创 拔河、体操或举重运动中运动员都有往手上抹粉的动作,为什么?
在拔河、体操或举重运动中,运动员往手上抹粉的动作是为了增加手掌与器械或绳子之间的摩擦力,防止打滑,从而提高运动表现并减少受伤的风险。这种粉末通常被称为“镁粉”,其化学名称为碳酸镁(MgCO3)。
2024-11-29 17:55:10
199
原创 测试自动化以及BSI(Boundary Scan Inspector)概述
在测试自动化领域,BSI指的是Boundary Scan Inspector,顾名思义,是基于边界扫描技术(Boundary Scan)用于测试和诊断集成电路(IC)的用以实现测试自动化的设备。
2024-11-22 10:14:44
971
原创 如何在matlab中将数据打印到csv格式文件中?
在 MATLAB 中,可以使用 writetable 或 csvwrite 函数将数据打印到 CSV 格式文件中。以下是这两种方法的详细说明和示例。
2024-11-19 16:01:45
357
原创 高考数学之圆锥曲线知识要点
本文汇总介绍高考数学范围内所涉及的圆锥曲线的知识要点。椭圆是平面上到两个定点(焦点)的距离之和为常数(且大于两定点之间的距离)的点的轨迹。双曲线是平面上到两个定点(焦点)的距离之差为常数(且小于两定点之间的距离)的点的轨迹。抛物线是平面上到一定点(焦点)和一直线(准线)距离相等的点的轨迹。
2024-11-02 13:26:59
1363
原创 Conda install channel introduction
在使用conda进行包安装时,-c选项后面跟的是channel(通道)的名称。是Conda的一个社区驱动的开源项目,旨在提供Conda包的集合,这些包由社区成员维护。它扩展了默认的Conda包集合,包括了许多由社区贡献的、不在默认Anaconda发行版中的包。具体来说,当你在命令中使用时,你告诉Conda从这个通道中寻找并安装指定的包。这对于安装那些不在默认通道中的包非常有用。例如,如果你想要安装一个在中但不在默认通道中的包,比如这条命令会告诉Conda从通道中查找并安装。
2024-10-29 09:40:08
913
原创 用AI生成rtl设计(synchronous FIFO)的实验(2)
上一篇()初步生成了一个同步FIFO以及相应的testbench,并且在解决了一些问题后也基本上跑通了确认了FIFO的基本读写操作。但是如上一篇3.3所述,这个简易的RTL实现的empty/full状态标志逻辑以及在empty/full状态下的读写保护是有问题的,或者说是功能有缺陷。本文继续“调试”大模型,看看能不能针对这些问题进行正确的功能不足和优化。
2024-10-18 11:58:07
906
原创 用AI生成rtl设计(synchronous FIFO)的实验
本实验用一个国内某大厂的AI大模型试着生成了一个同步FIFO的RTL模型,然后相应生成了一个简易的test-bench。目的是想看看现在大模型在数字逻辑设计领域能够对工程师有多少帮助。
2024-10-15 15:26:07
676
原创 python random seed
在Python中启用随机种子(random seed)是为了确保你的随机数生成过程是可重复的。通过设置随机种子,你可以保证每次运行代码时生成的随机数序列都是相同的。这在调试、测试或者需要可重复结果的科学计算中非常有用。Python的random模块和numpy库的随机数生成器都支持设置随机种子。以下介绍如何在这两个模块中设置随机种子的方法。
2024-10-13 17:32:24
1371
原创 MIPI DPHY HS传输模式SoT和EoT的传输值
Mipi DPHY的高速数据传输(HST:High Speed Transmission)以突发(Burst)方式发生。为了帮助接收机同步:(1) 每个burst前面有个leading sequence,叫做SoT(Start-Of-Transmission),接收机检测到SoT序列就表示接下来就是要接收的data burst;(2) 每个busrt后面有个trailing sequence,叫做EoT(End-Of-Transmission),接收机接收完EoT就知道当前data burst接收完毕
2024-05-12 11:01:21
1863
原创 Tutorial: Mathmatical Derivation of Backpropagation
反向传播是神经网络中常用的一种训练算法,其基本思想是通过计算损失函数对每个权重的梯度,然后使用梯度下降法来优化神经网络的权重。在神经网络发展的早期,当只有一层网络的时候,梯度下降算法的实现是显而易见的。单层的神经网络(线性回归啊,logistic回归其实都可以看成是单层的神经网络)能做的事情有限。在设计更多层数的神经网络的时候,所遇到的一个根本的难题就是如何(有效地)计算最终的损失函数对除了输出层以外的各层(即隐藏层)的权重参数的梯度。
2023-08-30 16:37:25
879
原创 Softmax, Cross-entropy Loss and Gradient derivation and Implementation
简要介绍机器学习、深度学习中常用的softmax函数,cross-entropy损失函数,以及它们的梯度推导(尤其是softmax和cross-entropy loss级联后的梯度推导)。特别地,从对单个变量的偏导数,到对输入向量的偏导数(即梯度),乃至到对整个batch的梯度的矩阵表示。最后,给出对应的python实现。这些将成为完全DIY用python实现一个分类神经网络的一个基本构成模块。
2023-08-26 10:06:00
1129
原创 Al Go: 蒙特卡洛树搜索(MCTS)简介
蒙特卡洛树搜索(MCTS)为我们提供了一种有效的方法,不需要依赖于什么高深的游戏策略,也不需要利用游戏特定的启发式规则,通过模拟随机棋局的方式来进行棋局好坏的评估,并据此进行落子选择。的选择机制,各子节点访问次数可能并不均等,有的子节点多一些,有的子节点少一些),蒙特卡洛搜索树会不断扩展生长,如果我们的选择机制足够好的话,就有可能以尽量小的代价对所有可能而且有效的“下一手”进行充分的探索和覆盖(同时,有效地忽略了那些价值较低的选项。当然,由于是随机走子,一局、两局的结果可能并不足以代表真实的情况。
2023-08-10 12:09:35
2092
原创 git : 从入门到实战进阶
记录日常git使用过程中碰到的一些常见问题的解决,以及一些常用技巧。作为自己作为git使用者的从入门到进阶的成长过程。不求完备但求简洁实用。动态更新。。。
2023-07-15 17:47:06
949
原创 vim/gvim: 文本搜索和替换命令和常用技巧例
vim/gvim: 文本搜索和替换命令和常用技巧例。。。可用用鼠标操作,也可以按Ctrl+V,然后用导航键(navigation key,即四个箭头键)进行范围选中。可以键入“:s”以查询当前编辑会话期间所有替换命令,用up/down来选定,然后回车即可重复执行。还可以用+和-来表示基于前一个行号指示,指定第2个行号指示相对于前一个的偏移值。反之,在pattern后面加上“\C”,ze表示要求区分大小写。在以上例中,"%"表示指定整个文件作为操作范围,即%与g结合表示对整个文件进行全局替换。
2023-07-07 20:58:39
27114
2
原创 linux中结合sed和grep的全局文本替换示例
sed命令中的oldstring和newstring不需要双引号围起来。grep命令前后是一对“`”,不是单引号,是键盘左上角的那个!path:路径,可以是一个文件路径,也可以是一个目录路径。grep命令的字符串可用双引号“”围起来,也可以不用。-i 表示inplace edit,就地修改文件。newstring:要替换成为的新字符串。-r 表示递归式地搜索子目录。oldstring:原字符串。-l 表示输出匹配的文件名。
2023-06-05 20:35:13
2564
原创 数字电路仿真编译文件指定方式
一个设计通常可能会可以通过预处理器宏开关来控制其中的配置情况或者设计选项的切换,本质上是切换编译范围。有时也通过宏来指定设计参数。比如说一个DMA的设计,4个通道还是8个通道,在编译时指定宏的值来决定按几个通道进行设计配置,也同样可以在命令行或者file.lst指定宏的定义,这里有两种情况。如下所示(最后两行):+libext+.v其中,NUM_CH对应于设计中使用到的一个参数类的宏,比如说用于指定通道数为8个。
2023-05-26 21:11:21
2819
原创 二叉树的序列化(serialization)与反序列化(de-serialization)
本文简要介绍二叉树的序列化处理和反序列化处理及对应的python实现。二叉树通常为了方便而以一维数组(比如说python list)的格式进行存储,二叉树的序列化(serialization)就是指将二叉树转换成列表或者一维数组的形式。实际使用的时候再由列表的形式变换回二叉树的格式,这个就是反序列化(de-serialization)。序列化和反序列化是各种复杂的数据结构的实际存储和使用时都需要碰到的问题。
2023-05-22 20:53:18
1772
1
原创 Python: 导入或执行python源文件的几种方法
本文介绍python中导入或执行python源文件(通常是从另一个python源文件中)的几种常用方法。包括import, exec(), os.system()等。
2023-05-12 19:45:14
5910
1
原创 Linux压缩和解压缩(tar, zip, bz2, 7z, xz, rar, etc)
汇总简介linux系统中常见各种文件压缩格式,包括tarball, zip, bz2, 7z, xz,rar等等的压缩和解压缩。本文中只介绍所涉及到的工具或命令常见使用方法,更详细更高端的使用方法可以用"cmd --help"的方式进行查看。
2023-05-02 14:32:11
6245
原创 Python string formatting: %-formatting, str.format(), f-strings
Python中有三种字符串格式化的方式: (1) %-formatting (2) str.format() (3) f-strings 本文简要介绍这三种字符格式化方法的使用方式。
2023-04-30 15:28:43
1152
原创 关于稠密性和连续性的通俗理解
通俗地说,当我们说某个数域的稠密性时说的该数域中任意两个不同的数之间必然还存在第三个(同样属于该数域的)不同的数。有理数是稠密的,任意两个有理数之间还有无穷多个有理数。取任意两个不同有理数p、q,显而易见的是,(p+q)/2是居于p和q之间的另一个有理数。依此类推,可以构造出p和q之间的任意多个有理数。
2023-04-27 13:02:37
4536
原创 git: Linux中创建中心仓库(or 裸仓库:bare repository)
简单介绍在linux系统中创建一个多人协同作业用的git repository的步骤及一些相关设置。这里仅考虑在同一linux服务器内的用户要访问该git-repo,暂不涉及从外部网络访问该git-repo的设置。首先,假定你有管理员权限,并且假定先创建了一个组grp_git,允许该组中的成员访问该共享git repository。
2023-04-17 13:54:11
1830
原创 算法笔记:前缀和+哈希表(leetcode题解例)
前缀和(以及与哈希表组合)是解决算法问题中常见的技巧。本文结合几道leetcode算法题解例介绍前缀和+哈希表的应用例。前缀和:针对一个给定的数列A,它的前缀和数列定义如下:(这里采用和c或者pyhton相同的从0开始的下标方式,以便于和编程进行对照)。前缀和的计算有一个良好的特性,即不是每个前缀和都需要独立计算,前后有依赖关系,如下所示:,这样的话针对数组(本文中不追求严格,数列和数组视为可以互换的名词)A,它的所有的前缀和可以在一次从左到右的遍历中以O(n)(而不是O(n**2)!
2023-03-12 16:45:17
1374
原创 RL笔记:基于策略迭代求CliffWaking-v0最优解(python实现)
CliffWalking-v0是gym库中的一个例子[1],是从Sutton-RLbook-2020的Example6.6改编而来。不过本文不是关于gym中的CliffWalking-v0如何玩的,而是关于基于策略迭代求该问题最优解的实现例。这个游戏非常简单,不用计算,直觉就可以知道,最优策略是:在出发点向上走一格;然后在第3行一路右行;到达最右侧后向下移动一格后即到达目标网格。总的奖励是-13点。以下给出基于策略迭代算法来求解这个问题的最优策略,看看能不能得出以上直觉上的最优策略。
2023-03-05 18:25:01
1816
4
原创 4K vs. UHD: What’s the Difference?
UHD的上一代标准是HD,HD的帧大小(分辨率)为1920*1080,UHD严格地来说有两种,一种是3840*2160;由于4K的江湖名声远比UHD跟通俗而易被大众接受,所以电视或者显示器等设备制造商就更喜欢用4K作为宣传,相当于碰了个瓷,但是其实是指4K UHD。有些厂家会特意标明4K UHD,以区别于DCI 4K,但是绝大多数情况就是直接用4K。4K标准的帧大小为4096 x 2160,是其上一代的2K标准的4倍。所以说,4K是从内容的角度来说事儿,而UHD则是从显示设备的角度来说事儿。
2023-02-28 17:24:57
2754
原创 RL笔记:动态规划(1): 策略估计和策略提升
Sutton-book第4章(动态规划)学习笔记。本文是关于其中4.1节(策略估计)和4.2节(策略提升)。当给定MDP的完全模型后,可以基于动态规划算法求解最优策略。事实上,所有使用的强化学习算法都可以看作是动态规划算法的近似。DP可以用于连续强化学习问题,但是仅限于有限的特殊情况能够给出精确解。常见的做法是将连续问题离散化,然后基于有限MDP的动态规划方法求解。问题设定:Finite MDP{S, A, R, p(s’,r|s,a)}Key Idea:基于价值函数进行结构化的策略搜索。
2023-02-05 15:26:33
2194
2
原创 强化学习笔记:基于策略的学习之策略迭代(python实现)
在强化学习中,根据是否依赖于(环境的)模型,可以分为有模型(model-based)学习和无模型(model-free)学习。根据行动的决策基准,可以分为基于价值的学习(value-based)和基于策略学习(policy-based)。前面两篇分别介绍了直接求解贝尔曼方程进行价值计算以及以迭代的方式求解价值近似(value iteration)。本篇进一步介绍基于策略的学习的策略迭代算法原理及其实现。
2023-01-28 16:05:38
3236
1
原创 强化学习笔记:基于价值的学习之价值迭代(python实现)
在强化学习中,根据是否依赖于(环境的)模型,可以分为有模型(model-based)学习和无模型(model-free)学习。根据行动的决策基准,可以分为基于价值的学习(value-based)和基于策略学习(policy-based)。 本文(以及接下来的文章)描述价值估计或者近似,通常称为价值迭代(value iteration)的原理和实现。。。。这里似乎存在状态值的定义与基于价值的方法的行动决策机制之间的矛盾。其本质问题是什么呢?
2023-01-25 17:18:40
2077
tictactoe-chenxy.py
2023-01-15
斯坦福大学CS231N-2022课程第一个大作业全部代码数据
2022-05-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅