House Robber 非负数组,相邻不能相加,求最大的和是多少(动态规划)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected andit will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonightwithout alerting the police.


出处:http://blog.csdn.net/xudli/article/details/44795737

这一篇更不错:http://www.programcreek.com/2014/03/leetcode-house-robber-java/

public class Solution {
    public int rob(int[] nums) {
        int n=nums.length;
        if(nums==null || n==0)  return 0;
        int[] n1=new int[n];
        int[] n2=new int[n];
        n1[0]=nums[0];
        n2[0]=0;
        for(int i=1;i<n;i++){
            n1[i]=n2[i-1]+nums[i];
            n2[i]=Math.max(n1[i-1],n2[i-1]);
        }
        return Math.max(n1[n-1],n2[n-1]);
    }
}



动态规划(Dynamic Programming)

状态转移方程:dp[i] = max(dp[i - 1], dp[i - 2] + num[i - 1])//多么的简洁明了啊

其中,dp[i]表示打劫到第i间房屋时累计取得的金钱最大值。

时间复杂度O(n),空间复杂度O(n)

public class Solution {
    public int rob(int[] nums) {
        int n=nums.length;
        if(nums==null || n==0)  return 0;
        int[] dp=new int[n+1];//定义的长度比数组长1
        dp[0]=0;
        dp[1]=nums[0];
        for(int i=2;i<n+1;i++){
            dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i-1]);
        }
        return dp[n];
    }
}


这个方法对于我来说,比较容易理解

public class Solution {
    public int rob(int[] nums) {
        int n=nums.length;
        if(nums==null || n==0)  return 0;
        int odd=0;
        int even=0;
        for(int i=0;i<n;i++){
            if(i%2==0){
                even+=nums[i];
                even=even>odd?even:odd;
            }else{
                odd+=nums[i];
                odd=odd>even?odd:even;
            }
        }
        return Math.max(odd,even);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值