[ZJOI2013]K大数查询 Solution

本文介绍了一种处理集合操作和查询的高效算法。通过离线所有操作并使用整体二分法,算法能在O(nlog^2n)的时间复杂度内解决在多个集合上进行元素添加和查询的问题。关键步骤包括将操作按类型分类,对添加操作用树状数组维护,对查询操作计算区间值,最后通过递归左右半部分确定答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给nnn个集合,最开始都为空集。
kkk个操作,操作111:每次在l−rl-rlr这些集合里面都加入一个数;操作222:查询l−rl-rlr这些集合的并集中的xxx大的值。
考虑整体二分。
把所有操作都离线下来。
对于二分的答案midmidmid,检索所有的操作:

  • 添加操作:如果这次加入的值大于midmidmid,对应区间加111,然后加入递归右半部分,如果不大于midmidmid,那么直接加入递归左半部分。
  • 查询操作:查询一下对应区间的区间和valvalval,如果大于这个询问的排名kthkthkth,就加入递归右半部分,反之让kthkthkth减去valvalval,加入左半部分,这是为了保证时间复杂度。

code:code:code:

/*考虑那些修改产生的影响:
先考虑添加操作,如果值大于mid,那么树状数组维护区间加。 
然后是查询操作,算一下区间大于这个数的个数,如果多了,放入右边,否则放入左边 
*/
#include <bits/stdc++.h>
#define int long long
#define regi register long long
int n,m;
int cnt;
int c[2][60000];
int ans[51000];
struct operate{
	int l;
	int r;
	int id;
	int val;
	int type;
}d[51000],tmpl[51000],tmpr[51000];
int read(){
	int r=0,w=0,c;
	for(;!isdigit(c=getchar());r=c);
	for(w=c^48;isdigit(c=getchar());w=w*10+(c^48));
	return r^45?w:-w;
}
void add(int op,int x,int val){
	for(x;x<=n;x+=x&-x)
	  c[op][x]+=val;
}
void ADD(int x,int y,int val){
	add(0,x,val);
	add(0,y+1,-val);
	add(1,x,x*val);
	add(1,y+1,-(y+1)*val);
}
int ask(int op,int x){
	int s=0;
	for(x;x>0;x-=x&-x)
	  s+=c[op][x];
	return s;
}
int ASK(int x,int y){
  return (y+1)*ask(0,y)-ask(1,y)-x*ask(0,x-1)+ask(1,x-1);
}
void solve(int l,int r,int ql,int qr){
	if(ql>qr)
	  return;
	if(l==r){
		for(regi i=ql;i<=qr;++i){
		  if(d[i].type==2){
		    ans[d[i].id]=l;
		  }
		}
		return;
	}
	int mid=l+r>>1;
	int tl=0,tr=0;
	for(regi i=ql;i<=qr;++i){
		if(d[i].type==1){
			if(d[i].val>mid){
			  ADD(d[i].l,d[i].r,1);
			  tmpr[++tr]=d[i];
			}
			else
			  tmpl[++tl]=d[i];
		}
		else{
			int res=ASK(d[i].l,d[i].r);
			if(res>=d[i].val)
			  tmpr[++tr]=d[i];
			else{
				d[i].val-=res;
			  tmpl[++tl]=d[i];
			}
		}	
	}
	for(regi i=1;i<=tr;++i)
	  if(tmpr[i].type==1&&tmpr[i].val>mid)
	    ADD(tmpr[i].l,tmpr[i].r,-1);
	for(regi i=1;i<=tr;++i)
	  d[ql+i-1]=tmpr[i];
	for(regi i=1;i<=tl;++i)
	  d[ql+tr+i-1]=tmpl[i];
  solve(mid+1,r,ql,ql+tr-1);
	solve(l,mid,ql+tr,qr);
}
main(){
	n=read();
	m=read();
	for(regi i=1;i<=m;++i){
	  d[i].type=read();
	  d[i].l=read();
	  d[i].r=read();
	  d[i].val=read();
	  d[i].id=(d[i].type==2?++cnt:0);
	}
	solve((-1LL)<<63,(1LL<<63)-1,1,m);
	for(regi i=1;i<=cnt;++i)
	  printf("%lld\n",ans[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值