TensorFlow官方教程代码之MNIST手写体数字识别
TensorFlow实现多层感知机
# 读入数据
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
# 设置参数
in_units = 784
h1_units = 300
# TensorFlow网络结构
x = tf.placeholder(tf.float32, [None, in_units]) # 输入
y_ = tf.placeholder(tf.float32, [None, 10]) # 标签
keep_prob = tf.placeholder(tf.float32)
W1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1)) # 权重
b1 = tf.Variable(tf.zeros([h1_units])) # 偏置
W2 = tf.Variable(tf.zeros([h1_units, 10])) # 权重
b2 = tf.Variable(tf.zeros([10])) # 偏置
hidden1 = tf.nn.relu(tf.matmul(x, W1) + b1)
hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
y = tf.nn.softmax(tf.matmul(hidden1_drop, W2) + b2)
cross_entropy = -tf.reduce_mean(tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
tf.global_variables_initializer().run()
for i in range(3000):
batch_xs, batch_ys = mnist.train.next_batch(100)
train_step.run({x: batch_xs, y_: batch_ys, keep_prob: 0.75})
# 模型评价
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1}))
关注微信公众号“遥感头号”,获取更多有关python、深度学习、遥感的信息、学习笔记、资料