Well~

技术日常~

这是一个flag

之前在另一本书中看过了HMM但是忘记了,今天看懂《机器学习导论》中的HMM,等开心了就过来写笔记。。。

2018-11-28 17:15:49

阅读数 54

评论数 0

机器学习技法笔记01-----线性SVM支持向量机

写的文章发给老师看得到回复里面有:去看看机器学习基础知识~ 最近,嗯,来一波机器学习基础~ 特征转换(Feature Transforms)的三个方向: SVM:解决如何选择特征转换以及复杂度的问题 AdaBoost:找出比较具有预测性质的特征并将其结合起来 Deep Learning:找出(学出...

2018-11-16 08:50:40

阅读数 78

评论数 0

调参工具--Hyperopt笔记

机器学习模型调参方法有三种: 1、网格搜索(全面但耗时) 2、随机搜索(快速但不全面) 3、贝叶斯优化 Hyperopt即为贝叶斯优化的一个实现。 参考链接: https://www.jianshu.com/p/35eed1567463...

2018-07-14 18:29:11

阅读数 624

评论数 0

报错File "pandas/_libs/hashtable_class_helper.pxi", line 1218, in pandas._libs.hashtable.PyObjectHashT

问题: 今天用pandas按列索引名称取某一列的值的时候,报错如下: File “pandas/_libs/hashtable_class_helper.pxi”, line 1218, in pandas._libs.hashtable.PyObjectHashTable.get_item ...

2018-05-11 13:23:20

阅读数 3548

评论数 2

垃圾邮件分类--朴素贝叶斯实现

朴素本叶斯常用于垃圾邮件过滤贝叶斯公式描述一种“逆概”问题,例如:实现不知道袋子里黑白球的比例,闭眼摸出一些球,观察颜色后,对袋子里黑白球比例做预测。贝叶斯公式网上很多,这里不再赘述,需要说明的是,贝叶斯公式包含条件概率和先验概率。朴素贝叶斯的“朴素”是指:假设每一个事件的发生是条件独立的。独立性...

2018-04-24 16:30:32

阅读数 744

评论数 0

pandas报错SettingWithCopyWarning

df2['user_cnt2'] = df2['user_id'].apply(lambda x: user_cnt.get(x, 0)) df2['item_cnt2'] = df2['item_id'].apply(lambda x: item_cnt.get(x, 0)) df2['shop...

2018-04-15 11:14:50

阅读数 368

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭