做网站该注意哪些

以下内容参考Google对网站管理员的建议.

 

设计与内容指南

 

网站应具有清晰的层次结构和文本链接。每个网页应至少可以通过一个静态文本链接打开。文本链接不同于通过javascript等其他代码生成的链接。如本文下面的“打印”即不是通过文本链接实现。

为用户提供网站地图,列出指向网站重要部分的链接。如果网站地图上的链接超过或大约为 100 个,则需要将网站地图拆分为多个网页。

网站应实用且信息丰富,网页文字应清晰、准确地表述要传达的内容。

要考虑到用户会使用哪些字词来查找您的网页,确保网站上确实包含了这些文字。 深刻理解这一点,会让你受益匪浅。

尽量使用文字而不是图形来显示重要的名称、内容或链接。Google 抓取工具无法识别图形中所含的文字。 特别是友情链接时,如果你是为了提供PR和排名,则用文字链接是重要的。

确保对 TITLE 和 ALT 标记属性的描述和表达准确无误。切记为网页的图片加上 ALT描述,这里是你放关键词的好地方。 

检查链接是否损坏,并确保 HTML 格式正确。 请使用 Google网站管理员工具时刻检查自己网站的链接,如有损坏,注意删除或修正。

如果您决定采用动态页面(即网址中包含"?"字符),请注意并非所有搜索引擎的抓取工具都能像抓取静态网页一样抓取动态网页。缩短参数长度并减少参数数目对动态页面是有帮助的。建议采用URL重写技术进行 动态链接静态化。

将特定网页上的链接限制在合理的数量内(少于 100 个)。如本页,包含内部链接和外部链接不要超过 100个。

网站准备就绪之后

 

将其他相关网站链接到您的网站。 就是寻找友情链接。

将网站提交给 Google,网址为:http://www.google.com/addurl.html 。

将 Sitemap 作为 Google网站管理员工具的一部分提交。Google 使用您的 Sitemap 来了解您网站的结构,并提高对您网页的抓取率。

确保应了解您网页的所有网站都知道您的网站已处于在线状态。即指向你网站的链接都需要是正常的,而非损坏。

将您的网站提交到相关的目录,例如,Open Directory Project 和 Yahoo!,以及其他特定行业的专业网站。 从这里了解:DMOZ-开放目录


转载于:https://my.oschina.net/passer007/blog/536357

内容概要:本文围绕基于支持向量机的电力短期负荷预测方法展开基于支持向量机的电力短期负荷预测方法研究——最小二乘支持向量机、标准粒子群算法支持向量机与改进粒子群算法支持向量机的对比分析(Matlab代码实现)研究,重点对比分析了三种方法:最小二乘支持向量机(LSSVM)、标准粒子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章详细介绍了各模型的构建过程与优化机制,并通过Matlab代码实现对电力负荷数据进行预测,评估不同方法在预测精度、收敛速度和稳定性方面的性能差异。研究旨在为电力系统调度提供高精度的短期负荷预测方案,提升电网运行效率与可靠性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的科研人员、电气工程及相关专业的研究生或高年级本科生;对机器学习在能源领域应用感兴趣的技术人员。; 使用场景及目标:①应用于电力系统短期负荷预测的实际建模与仿真;②比较不同优化算法对支持向量机预测性能的影响;③为相关课题研究提供可复现的代码参考和技术路线支持。; 阅读建议:建议读者结合文中提供的Matlab代码,深入理解每种支持向量机模型的参数设置与优化流程,动手实践以掌握算法细节,并可通过更换数据集进一步验证模型泛化能力。
【源码免费下载链接】:https://renmaiwang.cn/s/qaiji 18、MapReduce的计数器与通过MapReduce读取_写入数据库示例网址: input files to process”表示处理的总输入文件数量,“number of splits”指示文件被分割成多少个块进行处理,“Running job”显示作业的状态等。自定义计数器则是开发者根据实际需求创建的,用于跟踪特定任务的特定指标。开发者可以在Mapper或Reducer类中增加自定义计数器,然后在代码中增加计数器的值。这样,当作业完成后,可以通过查看计数器的值来分析程序的行为和性能。接下来,我们将讨论如何通过MapReduce与数据库交互,尤其是MySQL数据库。在大数据场景下,有时需要将MapReduce处理的结果存储到关系型数据库中,或者从数据库中读取数据进行处理。Hadoop提供了JDBC(Java Database Connectivity)接口,使得MapReduce作业能够与数据库进行连接和操作。要实现MapReduce读取数据库,首先需要在Mapper类中加载数据库驱动并建立连接。然后,可以在map()方法中使用SQL查询获取所需数据。在Reduce阶段,可以对数据进行进一步处理和聚合,最后将结果写入到数据库中。对于写入数据库,通常在Reducer类的reduce()方法或cleanup()方法中进行,将处理后的数据转换为适合数据库存储的格式,然后通过JDBC API执行插入、更新或删除等操作。需要注意的是,由于MapReduce作业可能涉及大量的数据写入,因此需要考虑数据库的并发处理能力和性能优化策略。总结一下,MapReduce的计数器提供了强大的监控和调试能力,而通过MapReduce与数据库的交互则扩展了大数据处理的应用场景。开发者可以根据需求利用计数器来优化作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值