attention 由上式可以看到,对于Attention机制的整个计算过程,可以总结为以下三个过程:根据 Query 与 Key 计算两者之间的相似性或相关性, 即 socre 的计算。通过一个 softmax 来对值进行归一化处理获得注意力权重值, 即 [公式] 的计算。通过注意力权重值对value进行加权求和, 即 [公式] 的计算...
Ubntu安装并使用虚拟环境 一、安装并配置sudo pip install virtualenvsudo pip install virtualenvwrappervirtualenvwrapper 是virtualenv的扩展管理包,可以将所有的虚拟环境整合在一个目录下。配置虚拟环境创建虚拟环境管理目录mkdir ~/.virtualenvs打开.bashrcsudo vim ~/.bashrc...
创建Django项目 1、django-admin startproject test1manage.py:一个命令行工具,可以使用你多种方式对Django项目进行交互内层的目录:项目真正的Python包init.py:一个空文件,他告诉python这个目录应该被看作一个python包setting.py:项目的配置urls.py:项目的url声明wsgi.py:项目于wsgi兼容的web服务器入口...
mvc和mvt MVC框架的核心思想是:解耦降低各个功能模块之间的耦合性(依赖性),方便变更,更容易重构代码,最大程度上实现代码的重用1、高扩展性2、向后兼容(兼容更高版本)3、低耦合性M表示model,主要用于对数据库层的封装V表示view,用于向用户展示结果C表示controller,是核心,用于处理请求、获取数据、返回结果MVTDjango是一款python的web开发框架与MVC有所...
Numpy教程(四) 1、数学函数三角函数sin()、cos()、tan()、arcsin()、arccos()、arctan()、degress()舍入函数numpy.around():返回指定数字的四舍五入值numpy.floor()numpy.ceil()2、算数函数加减乘除add()、subtract()、multiply()、divide()numpy.reciprocal...
Numpy教程(三) 1、迭代数组2、数组操作reshape()修改数组形状import numpy as np a = np.arange(8)print (a)print ('')b = a.reshape(4,2)print (b)原始数组:[0 1 2 3 4 5 6 7]修改后的数组:[[0 1] [2 3] [4 5] [6 7]]翻转数组numpy....
Numpy教程(二) 1、切片和索引slice(start, stop , step )a = np.arange(10)s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2print (a[s]) #[2 4 6]冒号分隔切片参数start:stop:stepimport numpy as npa = np.arange(10) b = ...
Numpy教程(一) ndarray对象1、创建一个ndarray对象numpy.array([1,2,3])2、numpy.dtype()数据类型对象3、Numpy数组属性(常用)ndarray.ndim:秩,即轴的数量或维度的数量ndarray.shape:数组的维度,对于矩阵,n行m列ndarray.size数组元素的总个数,相当于ndarray.shape中n*m的值ndarray.dtype...
神经网络Neura Network 1、背景1.1以人脑中的神经网络为启发,历史上出现过很多不同的版本1.2最著名的算法是backpropagation2、多层向前神经网络(Multilayer Feed-Forward Neural Network)2.1Backpropagation被使用在多层向前神经网络上2.2多层向前神经网络由以下部分组成:输入层(input layer),隐藏层(hidden layers),...
机器学习python 支持向量机Support vectors machine (SVM算法)(线性可区分类一) 1、背景1.1最早有VNV和Alexey Ya C在1963年提出1.2目前的版本是由Cor和VNV在1993年提出,并在1995年发表1.3深度学习在2012年出现之前,SVM被认为机器学习近十几年来最成功,表现最好的算法2、机器学习的一般框架:训练集—>提取特征向量—>结合一定的算法(分类器:比如决策树和KNN)—>得到结果3、SVM介绍3.2SVM寻找区分两类...
machine learning Knn算法 最邻近规则取样(三)自己实现算法 import csv import randomimport mathimport operator#导入数据集,split将数据分为两部分,训练集和测试集def loadDataset(filename,split,trainingSet=[],testSet=[]): with open(filename,'rt') as csvfile: lines=csv.reader(...
machine learning Knn算法 最邻近规则取样(二)应用 一、数据集Iris data ----虹膜150个实例萼片长度,萼片宽度,花瓣长度,花瓣宽度(sepal length,sepal width,patel length,patel width)类别Iris setosa,iris versicolor, iris virginica二、sklearnfrom sklearn import neighborsfrom sklearn...
machine learning Knn算法 最邻近规则取样(二)应用 一、数据集Iris data ----虹膜150个实例萼片长度,萼片宽度,花瓣长度,花瓣宽度(sepal length,sepal width,patel length,patel width)类别Iris setosa,iris versicolor, iris virginica二、sklearnfrom sklearn import neighborsfrom sklearn...
machine learning Knn算法 最邻近规则取样(一) 1.1Cover和Hart在1968年提出的最邻近算法1.2分类(classification)算法1.3输入基于实例的学习(instance-based learning),懒惰学习(lazy learning)3.算法详述3.1步骤为了判断未知实例的类别,以所有一直类别的实例作为参照(将每个训练样本转为立体的坐标)选择参数k(个数)计算未知实例于所有已知实例的距离选择k个已知实...
python 去掉字符串中的空格以及换行符 replace() 的用法 str.replace(old, new[, max])old -- 将被替换的子字符串。new -- 新字符串,用于替换old子字符串。max -- 可选字符串, 替换不超过 max 次
python 去掉字符串中的空格以及换行符 replace() 的用法 str.replace(old, new[, max])old -- 将被替换的子字符串。new -- 新字符串,用于替换old子字符串。max -- 可选字符串, 替换不超过 max 次
python中有关json的4个函数 json.dumps()和json.loads() json.dump()和json.load() 一、json.dumps()函数的使用,将字典转化为字符串1 import json4 dict1 = {"age": "12"}5 json_info = json.dumps(dict1)6 print("dict1的类型:"+str(type(dict1)))7 print("通过json.dumps()函数处理:")8 print("json_info的类型:"+str(typ...