Currency Exchange (Bellman-Ford)

4人阅读 评论(0) 收藏 举报
分类:

Currency Exchange

 
Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 
Input
The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4
Output
If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES

题目大意:

有n种货币,有m种换法,现有货币为s,有v个单位的s币。接下来的m行为a,b,ar(a->b的汇率),ac(a->b的佣金),br(b->a的汇率),bc(b->a的佣金)。现在要通过换币来使拥有的钱变多,如果能就输出YES,不能就输出NO。

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 105
using namespace std;
int n,m,s,k;
double v,dis[N];
struct node
{
    int a,b;
    double r,c;
}e[2*N];
int B_Ford()
{
    memset(dis,0,sizeof(dis));
    dis[s]=v;
    int flag=0;
    for(int i=1;i<=n;i++)
    {
        flag=0;
        for(int j=0;j<k;j++)
            if(dis[e[j].b]<(dis[e[j].a]-e[j].c)*e[j].r)
        {
            dis[e[j].b]=(dis[e[j].a]-e[j].c)*e[j].r;
            flag=1;
        }
        if(!flag)
            break;
    }
   if(flag)
    return 1;
    return 0;
}
int main()
{
    int a,b;
    double ar,ac,br,bc;
    scanf("%d%d%d%lf",&n,&m,&s,&v);
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%lf%lf%lf%lf",&a,&b,&ar,&ac,&br,&bc);
        e[k].a=a,e[k].b=b,e[k].r=ar,e[k++].c=ac;
        e[k].a=b,e[k].b=a,e[k].r=br,e[k++].c=bc;
    }
    if(B_Ford())
        printf("YES\n");
    else
        printf("NO\n");
    return 0;
}

查看评论

Exchange 2013 管理

-
  • 1970年01月01日 08:00

poj 1860 Currency Exchange (最短路)

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17745   Accepte...
  • LYHVOYAGE
  • LYHVOYAGE
  • 2014-02-16 09:30:09
  • 4653

【POJ 1860】 Currency Exchange

【POJ 1860】 Currency Exchange 模拟货比交易 输入数据n 货币种类 m 交易种类 s 初始货币类型 v 初始持币数 m行分别为 A B(该种交易的两种货币A、B) RAB,...
  • ChallengerRumble
  • ChallengerRumble
  • 2015-06-15 18:42:30
  • 767

HDU 1860 - Currency Exchange(最短路)

Description Several currency exchange points are working in our city. Let us suppose that each point...
  • u013534690
  • u013534690
  • 2014-12-21 11:22:25
  • 654

poj 1860 Currency Exchange (最短路变形-spfa)

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18295   Accepte...
  • u011721440
  • u011721440
  • 2014-04-09 15:54:58
  • 1103

POJ - 1860 Currency Exchange解题报告

Bellman-Ford
  • qq_36306833
  • qq_36306833
  • 2017-02-01 22:21:12
  • 327

poj 1860 Currency Exchange(SPFA)

poj 1860 Currency Exchange(SPFA)
  • u012860063
  • u012860063
  • 2014-08-07 08:50:42
  • 1464

hdu 1217 && poj2240 Arbitrage 最短路

Arbitrage                                                                Time Limit: 2000/1000 MS (J...
  • LYHVOYAGE
  • LYHVOYAGE
  • 2014-02-15 19:57:30
  • 2687

POJ 1860 - Currency Exchange

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18899   Accepte...
  • u013497151
  • u013497151
  • 2014-06-11 20:18:14
  • 846

POJ 1860 Currency Exchange SPFA判回路

就是有N种硬币,M个兑换所,每个兑换所可以把A兑换成B或者把B换成A A B Rab Cab Rba Cba可以表示一个兑换所,如果是x个A,则可以兑换成(x-Cab)*Rab个A,如果是x个B,则可...
  • code12hour
  • code12hour
  • 2016-07-23 19:22:03
  • 131
    个人资料
    持之以恒
    等级:
    访问量: 1万+
    积分: 1273
    排名: 3万+
    文章存档
    最新评论