矩形嵌套

矩形嵌套


题目描述:

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入描述:

第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出描述:

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入:

复制
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出:

5

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
    int a,b;
}e[1005];
int f[1005];
bool cmp(node x,node y)  //对长进行排序
{
    return x.a<y.a;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(f,0,sizeof(f));
        int n,x,y;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&x,&y);
            if(x>y)
             e[i].a=x,e[i].b=y;
             else
             e[i].a=y,e[i].b=x;
        }
        sort(e,e+n,cmp);
        for(int i=n-2;i>=0;i--)
            for(int j=i+1;j<n;j++)
        {
            if(e[j].b>e[i].b&&e[j].a>e[i].a)
                f[i]=max(f[i],f[j]+1);
        }
        int maxx=0;
        for(int i=0;i<n;i++)
            maxx=max(maxx,f[i]);
        printf("%d\n",maxx+1);
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/chimchim04/article/details/80347791
个人分类: 动态规划
上一篇单调递增最长子序列
下一篇NYOJ 最长公共子序列
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭