【scikit-learn 0.19 中文文档 】安装 scikit-learn | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/0.19.0/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/0.19.0/tutorial/basic/tutorial.html

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

 

安装 scikit-learn

Note

如果你想为这个项目做出贡献,建议你 安装最新的开发版本 .

安装最新版本

Scikit-learn 要求:

  • Python (>= 2.7 or >= 3.3),
  • NumPy (>= 1.8.2),
  • SciPy (>= 0.13.3).

如果你已经有一个安全的 numpy 和 scipy,安装 scikit-learn 的最简单的方法是使用 pip

pip install -U scikit-learn

或者 conda:

conda install scikit-learn

如果您还没有安装 NumPy 或 SciPy,还可以使用 conda 或 pip 安装这些。 当使用 pip 时,请确保使用 binary wheels,并且 NumPy 和 SciPy 不会从源重新编译,这可能在使用操作系统和硬件的特定配置(如 Raspberry Pi 上的 Linux)时发生。 从源代码构建 numpy 和 scipy 可能是复杂的(特别是在 Windows 上),并且需要仔细配置,以确保它们与线性代数程序的优化实现链接。而是使用如下所述的第三方分发。

如果您必须安装 scikit-learn 及其与 pip 的依赖关系,则可以将其安装为 scikit-learn[alldeps]。 最常见的用例是 requirements.txt 用作 PaaS 应用程序或 Docker 映像的自动构建过程的一部分的文件。此选项不适用于从命令行进行手动安装。

第三方发行版

如果您尚未安装具有 numpy 和 scipy 的 python 安装,建议您通过软件包管理器或通过 python 软件包进行安装。 这些与 numpy, scipy, scikit-learn, matplotlib 和许多其他有用的科学和数据处理库。

可用选项有:

Canopy 和 Anaconda 适用于所有支持的平台

Canopy 和 Anaconda 都运送了最新版本的 scikit-learn,另外还有一大批适用于 Windows,Mac OSX 和 Linux 的科学 python 库。

Anaconda 提供 scikit-learn 作为其免费分发的一部分.

Warning

     

升级或卸载使用 Anaconda 安装的 scikit-learn,或者 conda 不应该使用 pip 命令。代替:

升级 scikit-learn:

conda update scikit-learn

卸载 scikit-learn:

conda remove scikit-learn

使用 pip install -U scikit-learn 升级 or pip uninstall scikit-learn 卸载 可能无法正确删除 conda 命令安装的文件.

pip 升级和卸载操作仅适用于通过 pip install 安装的软件包.

WinPython 适用于 Windows

该 WinPython 项目分布 scikit-learn 作为额外的插件。

有关特定操作系统的安装说明或汇编出血边缘版本,请参阅 高级安装说明.

中文文档: http://sklearn.apachecn.org/cn/0.19.0/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/0.19.0/tutorial/basic/tutorial.html

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

有兴趣的大佬们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233

转载于:https://my.oschina.net/dataRunner/blog/1576577

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值