YUV格式详细解释与FFMPEG的关系

YUV主要的采样格式
    主要的采样格式有YCbCr 4:2:0、YCbCr 4:2:2、YCbCr 4:1:1和 YCbCr 4:4:4。其中YCbCr 4:1:1 比较常用,其含义为:每个点保存一个 8bit 的亮度值(也就是Y值), 每 2x2 个点保存一个 Cr 和Cb 值, 图像在肉眼中的感觉不会起太大的变化。所以, 原来用 RGB(R,G,B 都是 8bit unsigned) 模型, 4 个点需要 8x3=24 bites(如下图第一个图)。 而现在仅需要 8+(8/4)+(8/4)=12bites, 平均每个点占12bites(如下图第二个图)。这样就把图像的数据压缩了一半。
    上边仅给出了理论上的示例,在实际数据存储中是有可能是不同的,下面给出几种具体的存储形式:
    (1)    YUV 4:4:4
    YUV三个信道的抽样率相同,因此在生成的图像里,每个象素的三个分量信息完整(每个分量通常8比特),经过8比特量化之后,未经压缩的每个像素占用3个字节。
    下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
    存放的码流为: Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3
    (2)   YUV 4:2:2
    每个色差信道的抽样率是亮度信道的一半,所以水平方向的色度抽样率只是4:4:4的一半。对非压缩的8比特量化的图像来说,每个由两个水平方向相邻的像素组成的宏像素需要占用4字节内存。
    下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
    存放的码流为: Y0 U0 Y1 V1 Y2 U2 Y3 V3
    映射出像素点为:[Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]
    (3)   YUV 4:1:1
    4:1:1的色度抽样,是在水平方向上对色度进行4:1抽样。对于低端用户和消费类产品这仍然是可以接受的。对非压缩的8比特量化的视频来说,每个由4个水平方向相邻的像素组成的宏像素需要占用6字节内存
    下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
    存放的码流为: Y0 U0 Y1 Y2 V2 Y3
    映射出像素点为:[Y0 U0 V2] [Y1 U0 V2] [Y2 U0 V2] [Y3 U0 V2]
    (4)YUV4:2:0
    4:2:0并不意味着只有Y,Cb而没有Cr分量。它指得是对每行扫描线来说,只有一种色度分量以2:1的抽样率存储。进行隔行扫描,相邻的扫描行存储不同的色度分量,也就是说,如果一行是4:2:0的话,下一行就是4:0:2,再下一行是4:2:0…以此类推。对每个色度分量来说,水平方向和竖直方向的抽样率都是2:1,所以可以说色度的抽样率是4:1。对非压缩的8比特量化的视频来说,每个由2x2个2行2列相邻的像素组成的宏像素需要占用6字节内存。
    下面八个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]
    [Y5 U5 V5] [Y6 U6 V6] [Y7U7 V7] [Y8 U8 V8]
    存放的码流为:Y0 U0 Y1 Y2 U2 Y3
    Y5 V5 Y6 Y7 V7 Y8
    映射出的像素点为:[Y0 U0 V5] [Y1 U0 V5] [Y2 U2 V7] [Y3 U2 V7]
    [Y5 U0 V5] [Y6 U0 V5] [Y7U2 V7] [Y8 U2 V7]
    对应AVPicture里面有data[4]和linesize[4]其中data是一个指向指针的指针(二级、二维指针),也就是指向视频数据缓冲区的首地址,而data[0]~data[3]是一级指针,可以用如下的图来表示:
    data -->xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    ^                ^              ^
    |                |              |
    data[0]      data[1]         data[2]
    比如说,当pix_fmt=PIX_FMT_YUV420P时,data中的数据是按照YUV的格式存储的,也就是:
    data -->YYYYYYYYYYYYYYUUUUUUUUUUUUUVVVVVVVVVVVV
    ^             ^            ^
    |             |            |
    data[0]    data[1]      data[2]
    linesize是指对应于每一行的大小,为什么需要这个变量,是因为在YUV格式和RGB格式时,每行的大小不一定等于图像的宽度,对于RGB格式输出时,只有一个通道(bgrbgrbgr……)可用,即linesize[0],和data[0],so RGB24 : data[0] = packet rgb//bgrbgrbgr……
    linesize[0] = width*3
    其他的如data[1][2][3]与linesize[1][2][3]无任何意义。
    而对于YUV格式输出时,有三个通道可用,即data[0][1][2],与linesize[0][1][2],而yuv格式对于运动估计时,需要填充padding(right, bottom),故:
    linesize=width+padding size(16+16)。
    ///
    case PIX_FMT_YUV420P:   case PIX_FMT_YUVJ420P:  

 case PIX_FMT_RGB555:   

 if (PIC_DIRECTION_0 == m_dwFilpPicDirection)  

  {  

   m_pYuvFrame->data [0] += m_pYuvFrame->linesize[0] *  m_pVCodecContext->height;    

//因为是隔行扫描U与V只有高度的一半  

   m_pYuvFrame->data [1] += m_pYuvFrame->linesize[1] *  m_pVCodecContext->height/2;   

  m_pYuvFrame->data [2] += m_pYuvFrame->linesize[2] *  m_pVCodecContext->height/2;   

  m_pYuvFrame->linesize[0] = -m_pYuvFrame->linesize[0];    

 m_pYuvFrame->linesize[1] = -m_pYuvFrame->linesize[1];   

  m_pYuvFrame->linesize[2] = -m_pYuvFrame->linesize[2];  

  }    

    break; 

  case PIX_FMT_YUVJ422P: 

  case PIX_FMT_YUV422P: 

  case PIX_FMT_YUYVJ422: 

  case PIX_FMT_YUV411P:  

 case PIX_FMT_YUYV422:  

    if (PIC_DIRECTION_0 == m_dwFilpPicDirection) 

   {    

 m_pYuvFrame->data [0] += m_pYuvFrame->linesize[0] *  m_pVCodecContext->height;    

 m_pYuvFrame->data [1] += m_pYuvFrame->linesize[1] *  m_pVCodecContext->height;    

 m_pYuvFrame->data [2] += m_pYuvFrame->linesize[2] *  m_pVCodecContext->height;    

m_pYuvFrame->linesize[0] = -m_pYuvFrame->linesize[0];   

  m_pYuvFrame->linesize[1] = -m_pYuvFrame->linesize[1];   

  m_pYuvFrame->linesize[2] = -m_pYuvFrame->linesize[2];  

  }  

  break; 

  }在FFMPEG中转换RGB时顺便颠倒图像的方向算法












<详解YUV数据格式>

http://blog.csdn.net/lucky_greenegg/article/details/9942619


YUV格式有两大类:planar和packed。
对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。
对于packed的YUV格式,每个像素点的Y,U,V是连续交*存储的。

 

YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

    与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传输,所以用YUV方式传送占用极少的频宽。

YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0,关于其详细原理,可以通过网上其它文章了解,这里我想强调的是如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。

    用三个图来直观地表示采集的方式吧,以黑点表示采样该像素点的Y分量,以空心圆圈表示采用该像素点的UV分量。

 

先记住下面这段话,以后提取每个像素的YUV分量会用到。

  1. YUV 4:4:4采样,每一个Y对应一组UV分量。
  2. YUV 4:2:2采样,每两个Y共用一组UV分量。 
  3. YUV 4:2:0采样,每四个Y共用一组UV分量。 

2.  存储方式

    下面我用图的形式给出常见的YUV码流的存储方式,并在存储方式后面附有取样每个像素点的YUV数据的方法,其中,Cb、Cr的含义等同于U、V。

(1) YUVY 格式 (属于YUV422)

 
YUYV为YUV422采样的存储格式中的一种,相邻的两个Y共用其相邻的两个Cb、Cr,分析,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00,其他的像素点的YUV取值依次类推。  (2) UYVY 格式 (属于YUV422)
UYVY格式也是YUV422采样的存储格式中的一种,只不过与YUYV不同的是UV的排列顺序不一样而已,还原其每个像素点的YUV值的方法与上面一样。
 
(3) YUV422P(属于YUV422)
  YUV422P也属于YUV422的一种,它是一种Plane模式,即平面模式,并不是将YUV数据交错存储,而是先存放所有的Y分量,然后存储所有的U(Cb)分量,最后存储所有的V(Cr)分量,如上图所示。其每一个像素点的YUV值提取方法也是遵循YUV422格式的最基本提取方法,即两个Y共用一个UV。比如,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00。
(4)YV12,YU12格式(属于YUV420)

YU12和YV12属于YUV420格式,也是一种Plane模式,将Y、U、V分量分别打包,依次存储。其每一个像素点的YUV数据提取遵循YUV420格式的提取方式,即4个Y分量共用一组UV。注意,上图中,Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00,其他依次类推。

(5)NV12、NV21(属于YUV420)

NV12和NV21属于YUV420格式,是一种two-plane模式,即Y和UV分为两个Plane,但是UV(CbCr)为交错存储,而不是分为三个plane。其提取方式与上一种类似,即Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00

YUV420 planar数据, 以720×488大小图象YUV420 planar为例,

其存储格式是: 共大小为(720×480×3>>1)字节,

分为三个部分:Y,U和V

Y分量:    (720×480)个字节  

U(Cb)分量:(720×480>>2)个字节

V(Cr)分量:(720×480>>2)个字节

三个部分内部均是行优先存储,三个部分之间是Y,U,V 顺序存储。

即YUV数据的0--720×480字节是Y分量值,         

720×480--720×480×5/4字节是U分量    

720×480×5/4 --720×480×3/2字节是V分量。

4 :2: 2 和4:2:0 转换:

最简单的方式:

YUV4:2:2 ---> YUV4:2:0  Y不变,将U和V信号值在行(垂直方向)在进行一次隔行抽样。 YUV4:2:0 ---> YUV4:2:2  Y不变,将U和V信号值的每一行分别拷贝一份形成连续两行数据。

在YUV420中,一个像素点对应一个Y,一个4X4的小方块对应一个U和V。对于所有YUV420图像,它们的Y值排列是完全相同的,因为只有Y的图像就是灰度图像。YUV420sp与YUV420p的数据格式它们的UV排列在原理上是完全不同的。420p它是先把U存放完后,再存放V,也就是说UV它们是连续的。而420sp它是UV、UV这样交替存放的。(见下图) 有了上面的理论,我就可以准确的计算出一个YUV420在内存中存放的大小。 width * hight =Y(总和) U = Y / 4   V = Y / 4

 

所以YUV420 数据在内存中的长度是 width * hight * 3 / 2,

假设一个分辨率为8X4的YUV图像,它们的格式如下图:

                      YUV420sp格式如下图                                                          

 

             

                        YUV420p数据格式如下图

           

 

旋转90度的算法:

public static void rotateYUV240SP(byte[] src,byte[] des,int width,int height)
 {
    
  int wh = width * height;
  //旋转Y
  int k = 0;
  for(int i=0;i<width;i++) {
   for(int j=0;j<height;j++) 
   {
               des[k] = src[width*j + i];   
         k++;
   }
  }
  
  for(int i=0;i<width;i+=2) {
   for(int j=0;j<height/2;j++) 
   { 
               des[k] = src[wh+ width*j + i]; 
               des[k+1]=src[wh + width*j + i+1];
         k+=2;
   }
  }
  
  
 }

 

YV12和I420的区别        一般来说,直接采集到的视频数据是RGB24的格式,RGB24一帧的大小size=width×heigth×3 Bit,RGB32的size=width×heigth×4,如果是I420(即YUV标准格式4:2:0)的数据量是 size=width×heigth×1.5 Bit。       在采集到RGB24数据后,需要对这个格式的数据进行第一次压缩。即将图像的颜色空间由RGB2YUV。因为,X264在进行编码的时候需要标准的YUV(4:2:0)。但是这里需要注意的是,虽然YV12也是(4:2:0),但是YV12和I420的却是不同的,在存储空间上面有些区别。如下: YV12 : 亮度(行×列) + U(行×列/4) + V(行×列/4)

I420 : 亮度(行×列) + V(行×列/4) + U(行×列/4)

可以看出,YV12和I420基本上是一样的,就是UV的顺序不同。

继续我们的话题,经过第一次数据压缩后RGB24->YUV(I420)。这样,数据量将减少一半,为什么呢?呵呵,这个就太基础了,我就不多写了。同样,如果是RGB24->YUV(YV12),也是减少一半。但是,虽然都是一半,如果是YV12的话效果就有很大损失。然后,经过X264编码后,数据量将大大减少。将编码后的数据打包,通过RTP实时传送。到达目的地后,将数据取出,进行解码。完成解码后,数据仍然是YUV格式的,所以,还需要一次转换,这样windows的驱动才可以处理,就是YUV2RGB24。

YUY2  是 4:2:2  [Y0 U0 Y1 V0]

 

yuv420p 和 YUV420的区别 在存储格式上有区别
yuv420p:yyyyyyyy uuuuuuuu vvvvv yuv420: yuv yuv yuv

     YUV420P,Y,U,V三个分量都是平面格式,分为I420和YV12。I420格式和YV12格式的不同处在U平面和V平面的位置不同。在I420格式中,U平面紧跟在Y平面之后,然后才是V平面(即:YUV);但YV12则是相反(即:YVU)。
YUV420SP, Y分量平面格式,UV打包格式, 即NV12。 NV12与NV21类似,U 和 V 交错排列,不同在于UV顺序。
I420: YYYYYYYY UU VV    =>YUV420P
YV12: YYYYYYYY VV UU    =>YUV420P
NV12: YYYYYYYY UVUV     =>YUV420SP
NV21: YYYYYYYY VUVU     =>YUV420SP


要保存 YUV 格式数据,可以使用 FFmpeg 库提供的 `AVFrame` 结构体和 `av_write_frame` 函数。下面是保存 YUV 格式数据的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <libavformat/avformat.h> int main(int argc, char *argv[]) { int ret; AVFormatContext *fmt_ctx = NULL; AVOutputFormat *ofmt = NULL; AVStream *video_st = NULL; AVCodecContext *codec_ctx = NULL; AVFrame *frame = NULL; uint8_t *frame_data = NULL; int frame_size; int width = 640, height = 480; // 打开输出文件 if ((ret = avformat_alloc_output_context2(&fmt_ctx, NULL, NULL, "output.yuv")) < 0) { fprintf(stderr, "Error allocating output context: %s\n", av_err2str(ret)); return 1; } ofmt = fmt_ctx->oformat; // 添加视频流 video_st = avformat_new_stream(fmt_ctx, NULL); if (!video_st) { fprintf(stderr, "Error creating video stream\n"); return 1; } codec_ctx = video_st->codec; codec_ctx->codec_id = AV_CODEC_ID_RAWVIDEO; codec_ctx->codec_type = AVMEDIA_TYPE_VIDEO; codec_ctx->pix_fmt = AV_PIX_FMT_YUV420P; codec_ctx->width = width; codec_ctx->height = height; codec_ctx->time_base = (AVRational){1, 25}; if ((ret = avcodec_parameters_to_context(codec_ctx, video_st->codecpar)) < 0) { fprintf(stderr, "Error copying codec parameters to context: %s\n", av_err2str(ret)); return 1; } // 打开视频编码器 if ((ret = avcodec_open2(codec_ctx, NULL, NULL)) < 0) { fprintf(stderr, "Error opening video encoder: %s\n", av_err2str(ret)); return 1; } // 创建帧缓冲区 frame = av_frame_alloc(); if (!frame) { fprintf(stderr, "Error allocating frame\n"); return 1; } frame->width = width; frame->height = height; frame->format = codec_ctx->pix_fmt; if ((ret = av_frame_get_buffer(frame, 0)) < 0) { fprintf(stderr, "Error allocating frame buffer: %s\n", av_err2str(ret)); return 1; } frame_data = frame->data[0]; frame_size = av_image_get_buffer_size(codec_ctx->pix_fmt, width, height, 1); // 打开输出文件 if (!(ofmt->flags & AVFMT_NOFILE)) { if ((ret = avio_open(&fmt_ctx->pb, "output.yuv", AVIO_FLAG_WRITE)) < 0) { fprintf(stderr, "Error opening output file: %s\n", av_err2str(ret)); return 1; } } // 写入视频帧 for (int i = 0; i < 25; i++) { // 生成测试图像 for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int r = rand() % 256; int g = rand() % 256; int b = rand() % 256; uint8_t *yuv = frame_data + y * frame->linesize[0] + x * 3 / 2; yuv[0] = 0.299 * r + 0.587 * g + 0.114 * b; yuv[1] = -0.14713 * r - 0.28886 * g + 0.436 * b; yuv[2] = 0.615 * r - 0.51498 * g - 0.10001 * b; } } // 编码并写入帧 frame->pts = i; AVPacket pkt = {0}; av_init_packet(&pkt); pkt.data = NULL; pkt.size = 0; if ((ret = avcodec_send_frame(codec_ctx, frame)) < 0) { fprintf(stderr, "Error sending frame to encoder: %s\n", av_err2str(ret)); return 1; } while (ret >= 0) { ret = avcodec_receive_packet(codec_ctx, &pkt); if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { break; } else if (ret < 0) { fprintf(stderr, "Error encoding frame: %s\n", av_err2str(ret)); return 1; } pkt.stream_index = video_st->index; av_write_frame(fmt_ctx, &pkt); av_packet_unref(&pkt); } } // 清理工作 av_write_trailer(fmt_ctx); if (codec_ctx) avcodec_close(codec_ctx); if (frame) av_frame_free(&frame); if (fmt_ctx && !(ofmt->flags & AVFMT_NOFILE)) avio_closep(&fmt_ctx->pb); avformat_free_context(fmt_ctx); return 0; } ``` 这段代码首先创建一个 YUV 格式的视频流,然后生成一些随机数据作为测试图像,并将每帧图像编码成 YUV 格式的数据,最终将所有帧数据写入到文件中。注意,这里使用了随机数据生成测试图像,实际应用中需要根据实际情况生成真实的图像数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值