Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN

本文介绍了如何使用Apache Spark进行数据处理和分析。从启动交互式Shell开始,演示了如何使用Dataset API进行基本操作,如过滤和计数。此外,还介绍了如何缓存数据集以提高效率,并展示了如何构建独立的Spark应用程序。
摘要由CSDN通过智能技术生成

快速入门

本教程提供了如何使用 Spark 的快速入门介绍。首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scala 和 Python 来编写应用程序。

为了继续阅读本指南, 首先从 Spark 官网 下载 Spark 的发行包。因为我们将不使用 HDFS, 所以你可以下载一个任何 Hadoop 版本的软件包。

请注意, 在 Spark 2.0 之前, Spark 的主要编程接口是弹性分布式数据集(RDD)。 在 Spark 2.0 之后, RDD 被 Dataset 替换, 它是像RDD 一样的 strongly-typed(强类型), 但是在引擎盖下更加优化。 RDD 接口仍然受支持, 您可以在 RDD 编程指南 中获得更完整的参考。 但是, 我们强烈建议您切换到使用 Dataset(数据集), 其性能要更优于 RDD。 请参阅 SQL 编程指南 获取更多有关 Dataset 的信息。

使用 Spark Shell 进行交互式分析

基础

Spark shell 提供了一种来学习该 API 比较简单的方式, 以及一个强大的来分析数据交互的工具。在 Scala(运行于 Java 虚拟机之上, 并能很好的调用已存在的 Java 类库)或者 Python 中它是可用的。通过在 Spark 目录中运行以下的命令来启动它:

./bin/spark-shell

Spark 的主要抽象是一个称为 Dataset 的分布式的 item 集合。Datasets 可以从 Hadoop 的 InputFormats(例如 HDFS文件)或者通过其它的 Datasets 转换来创建。让我们从 Spark 源目录中的 README 文件来创建一个新的 Dataset:

scala> val textFile = spark.read.textFile("README.md")
textFile: org.apache.spark.sql.Dataset[String] = [value: string]

您可以直接从 Dataset 中获取 values(值), 通过调用一些 actions(动作), 或者 transform(转换)Dataset 以获得一个新的。更多细节, 请参阅 API doc

scala> textFile.count() // Number of items in this Dataset
res0: Long = 126 // May be different from yours as README.md will change over time, similar to other outputs

scala> textFile.first() // First item in this Dataset
res1: String = # Apache Spark

现在让我们 transform 这个 Dataset 以获得一个新的。我们调用 filter 以返回一个新的 Dataset, 它是文件中的 items 的一个子集。

scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]

我们可以链式操作 transformation(转换)和 action(动作):

scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?
res3: Long = 15

Dataset 上的更多操作

Dataset actions(操作)和 transformations(转换)可以用于更复杂的计算。例如, 统计出现次数最多的单词 :

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 15

第一个 map 操作创建一个新的 Dataset, 将一行数据 map 为一个整型值。在 Dataset 上调用 reduce 来找到最大的行计数。参数 map 与 reduce 是 Scala 函数(closures), 并且可以使用 Scala/Java 库的任何语言特性。例如, 我们可以很容易地调用函数声明, 我们将定义一个 max 函数来使代码更易于理解 :

scala> import java.lang.Math
import java.lang.Math

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 15

一种常见的数据流模式是被 Hadoop 所推广的 MapReduce。Spark 可以很容易实现 MapReduce:

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()
wordCounts: org.apache.spark.sql.Dataset[(String, Long)] = [value: string, count(1): bigint]

在这里, 我们调用了 flatMap 以 transform 一个 lines 的 Dataset 为一个 words 的 Dataset, 然后结合 groupByKey 和 count 来计算文件中每个单词的 counts 作为一个 (String, Long) 的 Dataset pairs。要在 shell 中收集 word counts, 我们可以调用 collect:

scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)

缓存

Spark 还支持 Pulling(拉取)数据集到一个群集范围的内存缓存中。例如当查询一个小的 “hot” 数据集或运行一个像 PageRANK 这样的迭代算法时, 在数据被重复访问时是非常高效的。举一个简单的例子, 让我们标记我们的 linesWithSpark 数据集到缓存中:

scala> linesWithSpark.cache()
res7: linesWithSpark.type = [value: string]

scala> linesWithSpark.count()
res8: Long = 15

scala> linesWithSpark.count()
res9: Long = 15

使用 Spark 来探索和缓存一个 100 行的文本文件看起来比较愚蠢。有趣的是, 即使在他们跨越几十或者几百个节点时, 这些相同的函数也可以用于非常大的数据集。您也可以像 编程指南. 中描述的一样通过连接 bin/spark-shell 到集群中, 使用交互式的方式来做这件事情。

独立的应用

假设我们希望使用 Spark API 来创建一个独立的应用程序。我们在 Scala(SBT), Java(Maven)和 Python 中练习一个简单应用程序。

我们将在 Scala 中创建一个非常简单的 Spark 应用程序 - 很简单的, 事实上, 它名为 SimpleApp.scala:

/* SimpleApp.scala */
import org.apache.spark.sql.SparkSession

object SimpleApp {
  def main(args: Array[String]) {
    val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system
    val spark = SparkSession.builder.appName("Simple Application").getOrCreate()
    val logData = spark.read.textFile(logFile).cache()
    val numAs = logData.filter(line => line.contains("a")).count()
    val numBs = logData.filter(line => line.contains("b")).count()
    println(s"Lines with a: $numAs, Lines with b: $numBs")
    spark.stop()
  }
}

注意, 这个应用程序我们应该定义一个 main() 方法而不是去扩展 scala.App。使用 scala.App 的子类可能不会正常运行。

该程序仅仅统计了 Spark README 文件中每一行包含 ‘a’ 的数量和包含 ‘b’ 的数量。注意, 您需要将 YOUR_SPARK_HOME 替换为您 Spark 安装的位置。不像先前使用 spark shell 操作的示例, 它们初始化了它们自己的 SparkContext, 我们初始化了一个 SparkContext 作为应用程序的一部分。

我们调用 SparkSession.builder 以构造一个 [[SparkSession]], 然后设置 application name(应用名称), 最终调用 getOrCreate 以获得 [[SparkSession]] 实例。

我们的应用依赖了 Spark API, 所以我们将包含一个名为 build.sbt 的 sbt 配置文件, 它描述了 Spark 的依赖。该文件也会添加一个 Spark 依赖的 repository:

name := "Simple Project"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.2.0"

为了让 sbt 正常的运行, 我们需要根据经典的目录结构来布局 SimpleApp.scala 和 build.sbt 文件。在成功后, 我们可以创建一个包含应用程序代码的 JAR 包, 然后使用 spark-submit 脚本来运行我们的程序。

# Your directory layout should look like this
$ find .
.
./build.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala

# Package a jar containing your application
$ sbt package
...
[info] Packaging {..}/{..}/target/scala-2.11/simple-project_2.11-1.0.jar

# Use spark-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit \
  --class "SimpleApp" \
  --master local[4] \
  target/scala-2.11/simple-project_2.11-1.0.jar
...
Lines with a: 46, Lines with b: 23

快速跳转

恭喜您成功的运行了您的第一个 Spark 应用程序!

# 针对 Scala 和 Java, 使用 run-example:
./bin/run-example SparkPi

# 针对 Python 示例, 直接使用 spark-submit:
./bin/spark-submit examples/src/main/python/pi.py

# 针对 R 示例, 直接使用 spark-submit:

./bin/spark-submit examples/src/main/r/dataframe.R



本资源为网页,不是PDF Apache Spark 2.0.2 中文文档 Spark 概述 编程指南 快速入门 Spark 编程指南 概述 Spark 依赖 Spark 的初始化 Shell 的使用 弹性分布式数据集(RDDS) 并行集合 外部数据集 RDD 操作 RDD 持久化 共享变量 Broadcast Variables (广播变量) Accumulators (累加器) 部署应用到集群 使用 Java / Scala 运行 spark Jobs 单元测试 Spark 1.0 版本前的应用程序迁移 下一步 Spark Streaming Spark Streaming 概述 一个简单的示例 基本概念 依赖 初始化 StreamingContext Discretized Streams(DStreams)(离散化流) Input DStreams 和 Receivers DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久化 CheckPointing 累加器和广播变量 应用程序部署 监控应用程序 性能 降低批处理的时间 设置合理的批处理间隔 内存 容错语义 迁移指南(从 0.9.1 或者更低版本至 1.x 版本) 快速跳转 Kafka 集成指南 DataFrames,Datasets 和 SQL Spark SQL 概述 SQL Datasets 和 DataFrames Spark SQL 入门指南 起始点 : SparkSession 创建 DataFrame 无类型 Dataset 操作(aka DataFrame 操作) 以编程的方式运行 SQL 查询 创建 Dataset RDD 的互操作性 数据源 通用的 Load/Save 函数 Parquet文件 JSON Datasets Hive 表 JDBC 连接其它数据库 故障排除 性能调优 缓存数据到内存 其它配置选项 分布式 SQL引擎 运行 Thrift JDBC/ODBC 运行 Spark SQL CLI 迁移指南 从 Spark SQL 1.6 升级到 2.0 从 Spark SQL 1.5 升级到 1.6 从 Spark SQL 1.4 升级到 1.5 从 Spark SQL 1.3 升级到 1.4 从 Spark SQL 1.0~1.2 升级到 1.3 兼容 Apache Hive 参考 数据类型 NaN 语义 Structured Streaming MLlib(机器学习) 机器学习库(MLlib)指南 ML Pipelines(ML管道) Extracting, transforming and selecting features(特征的提取,转换和选择) Classification and regression(分类和回归) Clustering(聚类) Collaborative Filtering(协同过滤) ML Tuning: model selection and hyperparameter tuning(ML调优:模型选择和超参数调整) Advanced topics(高级主题) MLlib:基于RDD的API Data Types - RDD-based API(数据类型) Basic Statistics - RDD-based API(基本统计) Classification and Regression - RDD-based API(分类和回归) Collaborative Filtering - RDD-based API(协同过滤) Clustering - RDD-based API(聚类 - 基于RDD的API) Dimensionality Reduction - RDD-based API(降维) Feature Extraction and Transformation - RDD-based API(特征的提取和转换) Frequent Pattern Mining - RDD-based API(频繁模式挖掘) Evaluation metrics - RDD-based API(评估指标) PMML model export - RDD-based API(PMML模型导出) Optimization - RDD-based API(最) GraphX(图形处理) Spark R 部署 集群模式概述 提交应用 Spark Standalone 模式 Spark on Mesos Spark on YARN Spark on YARN 上运行 准备 Spark on YARN 配置 调试应用 Spark 属性 重要提示 在一个安全的集群运行 用 Apache Oozie 来运行应用程序 Kerberos 故障排查 Spark 配置 Spark 监控 指南 作业调度 Spark 安全 硬件配置 构建 Spark
本文主要讨论 Apache Spark 的设计与实现,重点关注其设计思想、运行原理、实现架构及性能调优,附带讨论与 Hadoop MapReduce 在设计与实现上的区别。不喜欢将该文档称之为“源码分析”,因为本文的主要目的不是去解读实现代码,而是尽量有逻辑地,从设计与实现原理的角度,来理解 job 从产生到执行完成的整个过程,进而去理解整个系统。 讨论系统的设计与实现有很多方法,本文选择 问题驱动 的方式,一开始引入问题,然后分问题逐步深入。从一个典型的 job 例子入手,逐渐讨论 job 生成及执行过程所需要的系统功能支持,然后有选择地深入讨论一些功能模块的设计原理与实现方式。也许这样的方式比一开始就分模块讨论更有主线。 本文档面向的是希望对 Spark 设计与实现机制,以及大数据分布式处理框架深入了解的 Geeks。 因为 Spark 社区很活跃,更速度很快,本文档也会尽量保持同步,文档号的命名与 Spark 版本一致,只是多了一位,最后一位表示文档的版本号。 由于技术水平、实验条件、经验等限制,当前只讨论 Spark core standalone 版本的核心功能,而不是全部功能。诚邀各位小伙伴们加入进来,丰富和完善文档。 好久没有写这么完整的文档了,上次写还是三年前在学 Ng 的 ML 课程的时候,当年好有激情啊。这次的撰写花了 20+ days,从暑假写到现在,大部分时间花在 debug、画图和琢磨怎么写上,希望文档能对大家和自己都有所帮助。 内容 本文档首先讨论 job 如何生成,然后讨论怎么执行,最后讨论系统相关的功能特性。具体内容如下: Overview 总体介绍 Job logical plan 介绍 job 的逻辑执行图(数据依赖图) Job physical plan 介绍 job 的物理执行图 Shuffle details 介绍 shuffle 过程 Architecture 介绍系统模块如何协调完成整个 job 的执行 Cache and Checkpoint 介绍 cache 和 checkpoint 功能 Broadcast 介绍 broadcast 功能 Job Scheduling
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值