『 论文阅读』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems

本文转载自: https://blog.csdn.net/shine19930820/article/details/78810984

Abstract

MULTI-VIEW-DNN联合了多个域做的丰富特征,使用multi-view DNN模型构建推荐,包括app、新闻、电影和TV,相比于最好的算法,老用户提升49%,新用户提升110%。并且可以轻松的涵盖大量用户,解决冷启动问题。

主要做user embedding的过程,通多用户在多个域的行为作为一个ivew,来表征用户,参与用户embedding过程。

Contribution

  1. 利用丰富的用户特征,建立多用途的用户推荐系统。
  2. 针对基于内容的推荐,提出了一种深度学习方法。并学习不同的技术扩展推荐系统。
  3. 结合不同领域的数据,提出了Multi-View DNN模型建立推荐系统。
  4. multi-view DNN模型解决用户冷启动问题。
  5. 基于四个真实的大规模数据集,通过严格的实验证明所提出的推荐系统的有效性。

Data Set

TypeDataSetUserCntFeatureSizeJoint Users
User viewSearch20M3.5M/
Item ViewNews Apps Movie/TV5M 1M 60K100K 50K 50K1.5M 210K 60K

DSSM FOR USER MODELING IN RECOMMENDATION SYSTEMS

deep structured semantic model参考Learning deep structured semantic models for web search using clickthrough data

结构图:

  1. 把条目映射成低维向量。
  2. 计算查询和文档的cosine相似度。

其中:

l1=W1xl1=W1x

li=f(Wili1+bi),i=2,...,N1li=f(Wili−1+bi),i=2,...,N−1

y=f(WNlN1+bN)y=f(WNlN−1+bN)

word hashing

通过word hashing层将word映射为稠密向量。以good为例。

  1. 添加首尾标记: #good#
  2. 拆分word为n-grams: #go, goo, ood, od#
  3. 通过多个小的n-grams的向量表示word。

这种方法即使有新词出现,也不会出现问题。

DSSM训练

对于一次搜索,如果点击了一个文档,认为他们是相关的。对于搜索查询集,DSSM去最大化被点击文档D+D+条件似然概率**。

P(D+|Q)=exp(γR(Q,D+))DDexp(γR(Q,D))P(D+|Q)=exp(γR(Q,D+))∑D′∈Dexp(γR(Q,D′))

其中D是全集,γγ是平滑因子。损失函数自然就是:

L(W,b)=log(Q,D+)P(D+|Q)L(W,b)=−log∏(Q,D+)P(D+|Q)

MULTI-VIEW DEEP NEURAL NETWORK

对于User view,计算User View和Item View之间的P(IVi|UV)P(IVi|UV),然后最小化:

L(W,b)=log(UV,IV+)P(IV+i|UV)L(W,b)=−log∏(UV,IV+)P(IVi+|UV)

其中P()定义为:

P(IV+|UV)=exp(γcos(UV,IV+))IVIVexp(γcos(UV,IV))P(IV+|UV)=exp(γcos(UV,IV+))∑IV′∈IVexp(γcos(UV,IV′))

Data input

对于第j行输入数据,它的主域Xu,jXu,j和一个激活View Xa,jXa,j,其余的View输入Xi:iaXi:i≠a都为0向量。

User features

  • search queries:规范化,然后处理成unigram格式。
  • clicked URLs:只保留主域名,如www.linkdin.com

News features

news article clicks:

  1. title( tri-gram)
  2. top-level category(binary features)
  3. named entities

App features

App download histories:

  1. App tile( tri-gram)
  2. category(binary)

Movie/TV feature

movie/TV view history

  1. title( tri-gram)
  2. description( tri-gram)
  3. genre(binary)

训练过程

img

训练目标:

原文公式:

p=argmaxWu,W1,...Wvj=1Nexp(γacos(Yu,Ya,j))XRdaexp(γacos(Yu,fa(X,Wa))p=argmaxWu,W1,...Wv∑j=1Nexp(γacos(Yu,Ya,j))∑X′∈Rdaexp(γacos(Yu,fa(X′,Wa))

训练目标:

L(Wu,W1,...Wv)=j=1Nexp(γacos(Yu,Ya,j))XRdaexp(γacos(Yu,fa(X,Wa))L(Wu,W1,...Wv)=∑j=1Nexp(γacos(Yu,Ya,j))∑X′∈Rdaexp(γacos(Yu,fa(X′,Wa))

最小化L()为目标得到Wu,W1,...WvWu,W1,...Wv,即网络的参数矩阵。

MV-DNN优势

  1. 和DSSM相比,其query和doc的feature是一样长的维度,使用同样的预处理,限制了feature。而跨域信息feature往往不同,而且n-gram方法并不适用,所以MV-DNN结合其类别特征(如电影和app类别,地理位置等)。
  2. MV-DNN可以结合多个跨域信息,实现对user embedding。pair-wise training过程,user-item pairs。

降维方法

top features

对于user features,选取top-k最频繁的features。并通过TF-IDF过滤掉最常用的特征。

k-means

k-mean会指定k为类簇的个数,目标是最小化所有类簇点与中心点的距离只和。公式表达: 

argminC1,C2,Cki=1NminCj{C1,C2,Ck}distance(Xi,Ci)argminC1,C2,…Ck∑i=1NminCj∈{C1,C2…,Ck}distance(Xi,Ci)

其中 XiXi是数据点, CjCj是每个类簇的中心。通过K-means对相似的特征群分组为同一个cluster并生成新的特征,共生产k个新的特征。

应用:

对于输入数据矩阵X,shape=[size=n, dimension=k],划分为X=[f1,f2,fk]X=[f1,f2…,fk],然后将每个fkfk归一化,对[f1,f2,fk][f1,f2…,fk]使用k-means聚类,fifi之间计算距离用cos相似度。然后就可以将特征降维到k维,对于每个新的特征向量Yi,1in,1Cls(a)kYi,1≤i≤n,1≤Cls(a)≤k有:

Yi(j)=a:Xi(a)>0&Cls(a)=jfi(a)Yi(j)=∑a:Xi(a)>0&Cls(a)=jfi(a)​

比如原始维度是3.5M,设置k=10k,那么将为之后维度就是10k。

Local sensitive Hashing

通过一个随机的矩阵将数据映射到低纬向量空间上,并且保持原始空间上的pairwis cos距离在新的空间上仍然获得保留。

原始维度d,降维到k,那么映射矩阵ARd×kA∈Rd×k,即A包含了k个映射,每个映射AiAi都将X映射为YiYi,输出为YRkY∈Rk。计算YiYi的公式为: 

Yi={10ifAiX0elseYi={1ifAiX≥00else

计算 X1,X2X1,X2的cos相似度近似表示为: cos(H(Y1,Y2)kπ)cos(H(Y1,Y2)kπ),其中 H(Y1,Y2)H(Y1,Y2)表示 汉明距离,论文选取的k=10000.

Reduce the Number of Training Examples

每个用户在每个域都有大量的日志数据,将每个用户在每个域只选取一个user-item对,具体为用户特征-用户在此域喜欢的所有item的平均分数。

CONCLUSION AND FUTURE WORK

本文提出了一种通用的结合丰富用户特征和item特征的推荐系统框架,通过结合多个域的丰富信息,是的推荐系统的质量极大提高,并且此方法通过降维的方法可扩展到大的数据集,同时对于老用户和新用户都适用推荐,在几个公开的大数据集上的表现都明显优于其他方法。

此框架可以应用于各个推荐系统,未来还需要: 
1. 纳入更多的用户特征。 
2. 增加DNN扩展性,以便不在使用特征降维的方法。 
3. 加入更多的域并深入分析它的表现。 
4. 如何将协同过滤方法和本文的基于内容的方法结合。

代码

DSSM & Multi-view DSSM代码 https://github.com/InsaneLife/dssm 
Multi-view DSSM实现,参考GitHub:multi_view_dssm_v3 
CSDN原文:http://blog.csdn.net/shine19930820/article/details/78810984

Model DSSM on Tensorflow

代码: https://github.com/liaha/dssm

keras实现

Reference


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值