先贴代码:
#include <cstdio>
using namespace std;
int main()
{
int n, k;
while(scanf("%d%d", &n, &k) == 2) {
printf("1 2");
if(k) {
for(int i = 2; i <= k; i++) printf(" %d %d", (i<<1)-1, i<<1);
for(int i = k+1; i <= n; i++) printf(" %d %d", i<<1, (i<<1)-1);
}
else {
for(int i = 2; i <= n; i++) printf(" %d %d", (i<<1)-1, i<<1);
}
puts("");
}
return 0;
}
由于 2k <= n,所以可以直接构造一个解:
当k > 0时,从第一个数字开始,每相邻两个数字为1组,这样差的绝对值的和是n,后面的,前k组用小的减大的,后面n-k组用大的减小的,奇数序的和与偶数序的差的绝对值为 n - 2k,所以两者之差为2k;
k = 0时,每一组里都是小的减大的,这样前面的每组差的绝对值的和为n, 后面的奇数序与偶数序的差的绝对值的和是n,做差为0