cf 359 B

先贴代码:

#include <cstdio>

using namespace std;

int main()
{
    int n, k;
    while(scanf("%d%d", &n, &k) == 2) {
        printf("1 2");
        if(k) {
            for(int i = 2; i <= k; i++) printf(" %d %d", (i<<1)-1, i<<1);
            for(int i = k+1; i <= n; i++) printf(" %d %d", i<<1, (i<<1)-1);
        }
        else {
            for(int i = 2; i <= n; i++) printf(" %d %d", (i<<1)-1, i<<1);
        }
        puts("");
    }
    return 0;
}

由于 2k <= n,所以可以直接构造一个解:

当k > 0时,从第一个数字开始,每相邻两个数字为1组,这样差的绝对值的和是n,后面的,前k组用小的减大的,后面n-k组用大的减小的,奇数序的和与偶数序的差的绝对值为 n - 2k,所以两者之差为2k;

k = 0时,每一组里都是小的减大的,这样前面的每组差的绝对值的和为n, 后面的奇数序与偶数序的差的绝对值的和是n,做差为0

转载于:https://my.oschina.net/u/1421373/blog/379794

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值