Spark计算性能调优经验汇总

【参考https://www.cnblogs.com/jcchoiling/p/6440709.html】写的真不错 ,很解渴 

大数据spark性能优化的本质与软件无关,归根到底还是要回归到硬件( CPU(计算)、Memory(存储)、IO-Disk/ Network(数据交互) )的优化。

 1.[优化要点]

 并行度

数据倾斜(一定与业务紧密相关)

TASK调优(数据分布不均,Map任务和Reduce任务)

shuffle调优

RDD调优

内存优化(在一个 Task 运行的时候,默应会占用 Executor 总内存的 20%,Shuffle 拉取数据和进行聚合操作等占用了 20% 的内存,剩下的大概有 60% 是用于 RDD 持久化 (例如 cache 数据到内存),Task 在运行时候是跑在 Core 上的,比较理想的是有足够的 Core 同时数据分布比较均匀,这个时候往往能够充分利用集群的资源)

2.[核心调优参数]

num-executors:该参数一定会被设置,Yarn 会按照 Driver 的申请去最终为当前的 Application 生产指定个数的 Executors,实际生产环境下应该分配80个左右 Executors 会比较合适呢。
executor-memory:这个定义了每个 Executor 的内存,它与 JVM OOM 紧密相关,很多时候甚至决定了 Spark 运行的性能。实际生产环境下建义是 8G 左右,很多时候 Spark 运行在 Yarn 上,内存占用量不要超过 Yarn 的内存资源的 50%。
executor-cores:决定了在 Executors 中能够并行执行的 Tasks 的个数。实际生产环境下应该分配4个左右,一般情况下不要超过 Yarn 队列中 Cores 总数量的 50%。
driver-memory:默应是 1G
spark.default.parallelizm:并行度问题,如果不设置这个参数,Spark 会跟据 HDFS 中 Block 的个数去设置这一个数量,原理是默应每个 Block 会对应一个 Task,默应情况下,如果数据量不是太多就不可以充份利用 executor 设置的资源,就会浪费了资源。建义设置为 100个,最好 700个左右。Spark官方的建义是每一个 Core 负责 2-3 个 Task。 
spark.storage.memoryFraction:默应占用 60%,如果计算比较依赖于历史数据则可以调高该参数,当如果计算比较依赖 Shuffle 的话则需要降低该比例。
spark.shuffle.memoryFraction:默应占用 20%,如果计算比较依赖 Shuffle 的话则需要调高该比例。

3.[spark更高性能的算子]

Shuffle 分开两部份,一个是 Mapper 端的Shuffle,另外一个就是 Reducer端的 Shuffle,性能调优有一个很重要的总结就是尽量不使用 Shuffle 类的算子,我们能避免就尽量避免,因为一般进行 Shuffle 的时候,它会把集群中多个节点上的同一个 Key 汇聚在同一个节点上,例如 reduceByKey。然后会优先把结果数据放在内存中,但如果内存不够的话会放到磁盘上。Shuffle 在进行数据抓取之前,为了整个集群的稳定性,它的 Mapper 端会把数据写到本地文件系统。这可能会导致大量磁盘文件的操作。如何避免Shuffle可以考虑以下:

    采用 Map 端的 Join (RDD1 + RDD2 )先把一个 RDD1的数据收集过来,然后再通过 sc.broadcast( ) 把数据广播到 Executor 上;
     如果无法避免Shuffle,退而求其次就是需要更多的机器参与 Shuffle 的过程,这个时候就需要充份地利用 Mapper 端和 Reducer 端机制的计算资源,尽量使用 Mapper 端的 Aggregrate 功能,e.g. aggregrateByKey 操作。相对于 groupByKey而言,更倾向于使用 reduceByKey( ) 和 aggregrateByKey( ) 来取代 groupByKey,因为 groupByKey 不会进行 Mapper 端的操作,aggregrateByKey 可以给予更多的控制。
      如果一批一批地处理数据来说,可以使用 mapPartitions( ),但这个算子有可能会出现 OOM 机会,它会进行 JVM 的 GC 操作!
      如果进行批量插入数据到数据库的话,建义采用foreachPartition( ) 。
        因为我们不希望有太多的数据碎片,所以能批量处理就尽量批量处理,你可以调用 coalesce( ) ,把一个更多的并行度的分片变得更少,假设有一万个数据分片,想把它变得一百个,就可以使用 coalesce( )方法,一般在 filter( ) 算子之后就会用 coalesce( ),这样可以节省资源。
       官方建义使用 repartitionAndSortWithPartitions( );
       数据进行复用时一般都会进行持久化 persisit( );
      建义使用 mapPartitionWithIndex( );
      也建义使用 tree 开头的算子,比如说 treeReduce( ) 和 treeAggregrate( );

4.[小结]

大数据必然要思考的核心性能问题不外乎 CPU 计算、内存管理、磁盘和网络IO操作,这是无可避免的,但是可以基于这个基础上进行优化,思考如何最优化的使用计算资源,思考如何在优化代码,在代码层面上防避坠入性能弱点;思考如何减少网络传输和思考如何最大程度的实现数据分布均衡。在资源管理调优方面可以设置一些参数,比如num-executors、executor-memory、executor-cores、driver-memory、spark.default.parallelizm、spark.storage.memoryFraction、spark.shuffle.memoryFraction

Shuffle 所导致的问题是所有分布式系统都无法避免的,但是如何把 Shuffle 所带来的性能问题减少最低,是一个很可靠的优化方向。Shuffle 的第一阶段即Mapper端在默应情况下会写到本地,而reducer通过网络抓取的同一个 Key 在不同节点上都把它抓取过来,内存可能不够,不够的话就写到磁盘中,这可能会导致大量磁盘文件的操作。在实际编程的时候,可以用一些比较高效的RDD算子,例如 reduceByKey、aggregrateByKey、coalesce、foreachPartition、repartitionAndSortWithPartitions。

 

转载于:https://my.oschina.net/u/3575262/blog/1587063

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值