NYOJ 括号匹配系列2,5

本文出自:http://blog.csdn.net/svitter


括号匹配一:http://acm.nyist.net/JudgeOnline/problem.php?pid=2

括号匹配二:http://acm.nyist.net/JudgeOnline/problem.php?pid=15


之前被这个题目难住,现在看动态规划就顺便过来AC了它。结果发现当年被难住一点也不丢人。。

括号匹配一很简单,就是栈的应用,AC代码:

//============================================================================
// Name        : 括号匹配.cpp
// Author      : 
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================

#include <iostream>
#include <cstdio>
#include <string.h>
#include <stack>

using namespace std;

void ace(){
	int n;
	scanf("%d", &n);
	char ch;
	char tmp;
	ch = getchar();
	while(n --){
		stack <char> s;
		while((ch = getchar())!= '\n'){
			if(s.empty())
				s.push(ch);
			else{
				tmp = s.top();
				if(tmp == '(' && ch == ')')
					s.pop();
				else if(tmp == '[' && ch == ']')
					s.pop();
				else
					s.push(ch);
			}
		}
		if(s.empty())
			printf("Yes\n");
		else
			printf("No\n");
	}
}


int main() {
	ace();
	return 0;
}
第二道就是DP题目了- -

真心被难住了。下面分析一下:

通过分析(别问我怎么分析的,画多了就看出来了- -)这必定是一个通过区间括号求和计算出的最小匹配括号值。

dp方程: dp [ i ] [ j ] = min ( dp [ i ] [ j ] , dp [ i ] [ k ] + dp [ k + 1 ] [ j ] );

dp[ i ][ j ] 表示当前匹配最小的括号值。后来发现这个不是正确的- -。因为这个阶段值与另一个阶段值会相互影响,违反了条件。


有重新做了分析:

发现无非就是这么几种情况:

" ..[ ... ] " + " ] “

" ..[ ... [ " + " ] "

" ..[ ... ] " + " [ "

" ..[ ... [ " + " [ "

这么四种情况。

如果假设dp [ i ] [ j ] = dp [ i ] [ j - 1 ] + 1

那么不符合情况的有第一种和第二种。而这两种情况就是因为中间串中有能够与最新加入的str[j]匹配的串。所以,当出现匹配串时,寻找最佳的匹配方案 ——dp [ i ] [ j ] = min ( dp [ i ] [ j ] , dp [ i ] [ k - 1 ] + dp [ k + 1 ] [ j - 1 ] );就是去除了两个括号,求括号里面的部分和括号外面部分的最小值。

特别的,为了针对 j  == i + 1的情况, dp [ i ] [ j ] = min ( dp [ i ] [ j ], dp [ i + 1] [ k - 1 ] + dp [ k + 1 ] [ j ])是不成立的。

AC代码:

//============================================================================
// Name        : 括号匹配.cpp
// Author      :
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================

#include <iostream>
#include <cstdio>
#include <string.h>
#include <stack>

using namespace std;
#define min(a, b) a > b ? b : a

int dp[102][102];
char str[1001];

bool match(int i, int j)
{
    if (str[i] == '(' && str[j] == ')')
        return true;
    else if (str[i] == '[' && str[j] == ']')
        return true;
    else
        return false;
}

void ace()
{
    //case
    int c;
    scanf("%d", &c);
    getchar();

    //work point
    int i, j, k;

    //value
    int n;

    while (c--)
    {
        scanf("%s", str + 1); //此处可以尝试a+1
        memset(dp, 0, sizeof(dp));
        n = strlen(str + 1);

        //区间为差值为0时,必定需要一个括号匹配
        for (i = 1; i <= n; i++)
            dp[i][i] = 1;

        for (j = 2; j <= n; j++)        // j = 2...n
            for (i = j - 1; i >= 1; i--) // i = j...1
            {
                dp[i][j] = dp[i][j-1] + 1;
                for (k = i; k < j; k++)  //k = i+1...j-1
                {
                    if(match(k, j))
                    {
                        dp[i][j] = min(dp[i][j], dp[i][k-1] + dp[k + 1][j - 1]);
                    }
                }
            }

        printf("%d\n", dp[1][n]);
    }
}

int main()
{
    ace();
    return 0;
}


后来依据http://blog.csdn.net/svitter/article/details/25186367

重写了代码,解题思路可以看上述题目。

//============================================================================
// Name        : test.cpp
// Author      : 
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
//============================================================================
// Name        : 动态规划.cpp
// Author      : blog.csdn.net/svitter
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================

#include <iostream>
#include <stdio.h>
#include <string.h>

using namespace std;
#define MAXN 256
char br[MAXN];
int dp[MAXN][MAXN], pos[MAXN][MAXN];
int len;

bool match(int i, int j) {
	if (br[i] == '(' && br[j] == ')')
		return true;
	if (br[i] == '[' && br[j] == ']')
		return true;
	return false;
}

int main() {
	//work pit
	int i, j, k, mid, t;
	int Case;
	scanf("%d", &Case);
	getchar();
	while (Case--) {
		while (gets(br) != NULL) {
			memset(dp, 0, sizeof(dp));

			len = strlen(br);
			for (i = 0; i < len; i++)
				dp[i][i] = 1;

			for (k = 1; k < len; k++) {
				for (i = 0; i + k < len; i++) {
					j = i + k;
					dp[i][j] = 0x7fffffff;
					if (match(i, j)) { //如果当前位置匹配,那么pos置-1
						dp[i][j] = dp[i + 1][j - 1], pos[i][j] = -1;
					}
					for (mid = i; mid < j; mid++) {
						if (dp[i][j] > (t = dp[i][mid] + dp[mid + 1][j])) { //如果存在更优分解,那么选择更优分解
							dp[i][j] = t, pos[i][j] = mid;
						}
					}
				}
			}

			printf("%d\n", dp[0][len - 1]);
		}
	}

	return 0;
}


转载于:https://my.oschina.net/u/1017188/blog/333512

x1y2 x2y3 x3y1-x1y3-x2y1-x3y2 是计算三角形面积的公式中的一部分。 在这个公式中,x1、x2、x3分别表示三角形的三个顶点的x坐标,y1、y2、y3分别表示三角形的三个顶点的y坐标。通过计算这个表达式的值,可以得到三角形的面积。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [TetraCluster:使用并行Java 2库的Java并行程序。 该程序在群集并行计算机上运行,​​以从给定的点集中找到...](https://download.csdn.net/download/weixin_42171208/18283141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [线性代数有个题,求正交变换x=Qy,化二次型f(x1,x2,x3)=8x1x2+8x1x3+8x2x3为标准型求出特征值](https://blog.csdn.net/weixin_39956182/article/details/115882118)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [nyoj-67-三角形面积(S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2))](https://blog.csdn.net/weixin_30492601/article/details/99541033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值