Spark Worker启动源码分析

Spark Worker启动源码分析

更多资源分享

Youtube视频分享

Bilibili视频分享

<iframe src="//player.bilibili.com/player.html?aid=37442247&page=1" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true"> </iframe>

start-slave.sh启动脚本

  • worker启动脚本跟master一样,都调用spark-daemon.sh,只是启动类不一样
CLASS="org.apache.spark.deploy.worker.Worker"
spark-daemon.sh start $CLASS 

Worker main入口

主要源码

  • 启动 'sparkWorker' 的服务
def main(argStrings: Array[String]) {
    Utils.initDaemon(log)
    val conf = new SparkConf
    val args = new WorkerArguments(argStrings, conf)
    val rpcEnv = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, args.cores,
      args.memory, args.masters, args.workDir, conf = conf)
    rpcEnv.awaitTermination()
  }

  def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      cores: Int,
      memory: Int,
      masterUrls: Array[String],
      workDir: String,
      workerNumber: Option[Int] = None,
      conf: SparkConf = new SparkConf): RpcEnv = {

    // The LocalSparkCluster runs multiple local sparkWorkerX RPC Environments
    val systemName = SYSTEM_NAME + workerNumber.map(_.toString).getOrElse("")
    val securityMgr = new SecurityManager(conf)
    val rpcEnv = RpcEnv.create(systemName, host, port, conf, securityMgr)
    val masterAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))
    rpcEnv.setupEndpoint(ENDPOINT_NAME, new Worker(rpcEnv, webUiPort, cores, memory,
      masterAddresses, systemName, ENDPOINT_NAME, workDir, conf, securityMgr))
    rpcEnv
  }

Worker onStart方法调用

WorkUI

  • 启动WorkerUI

向所有master注册

  • 线程池中每个master单独一个线程,向master注册worker
  • worker通过 masterEndpoint.ask向master发送注册worker消息 : RegisterWorker
  • master 接收到消息(RegisterWorker)处理后,回应worker消息 : RegisteredWorker
  • worker收到RegisteredWorker消息后,进行 registered = true,和刷新内存中的master信息
 override def onStart() {
    assert(!registered)
    logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(
      host, port, cores, Utils.megabytesToString(memory)))
    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
    logInfo("Spark home: " + sparkHome)
    createWorkDir()
    shuffleService.startIfEnabled()
    webUi = new WorkerWebUI(this, workDir, webUiPort)
    webUi.bind()

    val scheme = if (webUi.sslOptions.enabled) "https" else "http"
    workerWebUiUrl = s"$scheme://$publicAddress:${webUi.boundPort}"
    registerWithMaster()

    metricsSystem.registerSource(workerSource)
    metricsSystem.start()
    // Attach the worker metrics servlet handler to the web ui after the metrics system is started.
    metricsSystem.getServletHandlers.foreach(webUi.attachHandler)
  }
 private def registerWithMaster() {
    // onDisconnected may be triggered multiple times, so don't attempt registration
    // if there are outstanding registration attempts scheduled.
    registrationRetryTimer match {
      case None =>
        registered = false
        registerMasterFutures = tryRegisterAllMasters()
        connectionAttemptCount = 0
        registrationRetryTimer = Some(forwordMessageScheduler.scxheduleAtFixedRate(
          new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              Option(self).foreach(_.send(ReregisterWithMaster))
            }
          },
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          TimeUnit.SECONDS))
      case Some(_) =>
        logInfo("Not spawning another attempt to register with the master, since there is an" +
          " attempt scheduled already.")
    }
  }

  private def registerWithMaster(masterEndpoint: RpcEndpointRef): Unit = {
    masterEndpoint.ask[RegisterWorkerResponse](RegisterWorker(
      workerId, host, port, self, cores, memory, workerWebUiUrl))
      .onComplete {
        // This is a very fast action so we can use "ThreadUtils.sameThread"
        case Success(msg) =>
          Utils.tryLogNonFatalError {
            handleRegisterResponse(msg)
          }
        case Failure(e) =>
          logError(s"Cannot register with master: ${masterEndpoint.address}", e)
          System.exit(1)
      }(ThreadUtils.sameThread)
  }

  private def handleRegisterResponse(msg: RegisterWorkerResponse): Unit = synchronized {
    msg match {
      case RegisteredWorker(masterRef, masterWebUiUrl) =>
        logInfo("Successfully registered with master " + masterRef.address.toSparkURL)
        registered = true
        changeMaster(masterRef, masterWebUiUrl)
        forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
          override def run(): Unit = Utils.tryLogNonFatalError {
            self.send(SendHeartbeat)
          }
        }, 0, HEARTBEAT_MILLIS, TimeUnit.MILLISECONDS)
        if (CLEANUP_ENABLED) {
          logInfo(
            s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
          forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              self.send(WorkDirCleanup)
            }
          }, CLEANUP_INTERVAL_MILLIS, CLEANUP_INTERVAL_MILLIS, TimeUnit.MILLISECONDS)
        }

      case RegisterWorkerFailed(message) =>
        if (!registered) {
          logError("Worker registration failed: " + message)
          System.exit(1)
        }

      case MasterInStandby =>
        // Ignore. Master not yet ready.
    }
  }

转载于:https://my.oschina.net/u/723009/blog/2979233

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值