tensorflow模型部署系列————立贴

引言

本文开始我将要写几篇针对tensorflow系列模型的导出方法和步骤,此文为立贴文。一来确定后续研究路线,二来用于鞭策自己将系列博文坚持写完。相关示例代码放在gdyshi的github

研究线路

模型部署的第一步就是要有模型,所以我首先把模型导出方法做一下梳理,部署主要有两种:单机版和服务器版。单机版可以在单机上进行模型推理,主要应用在离线的智能终端、边缘计算产品上;单机版我先从最简单的python开始,依次深入到C++版、JAVA版、嵌入式版、浏览器前端版。服务器版可以在服务器上进行模型推理,终端或客户端通过网络调用传输数据给服务器,并从服务器获取推理后的预测结果;服务器版我先手动搭建一个简单的flask服务,然后深入到TensorFlow Serving,最后是分布式服务器部署。

已完成博文列表

后记

分布式服务器部署博文因为TensorFlow Serving已经做进去了,就不再单独写了。感谢大家的支持和鼓励,tensorflow模型部署系列博文已完成。
我后面会持续完善本系列博客已写的内容。如果您认为本系列需要增加什么新的主题,欢迎留言。

参考


发布了25 篇原创文章 · 获赞 39 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览