原文地址:http://blog.csdn.net/v_JULY_v/article/details/6322882
题目描述:
定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。如把字符串abcdef左旋转2位得到字符串cdefab。请实现字符串左旋转的函数,要求对长度为n的字符串操作的时间复杂度为O(n),空间复杂度为O(1)。
类似的问题,设计一个算法,把一个含有N个元素的数组循环右移K位,要求时间复杂度为O(N),且只允许使用两个附加变量。
解法一:分析:我们先试验简单的办法,可以每次将数组中的元素右移一位,循环K次。
abcd1234→4abcd123→34abcd12→234abcd1→1234abcd。
import junit.framework.TestCase;public class ReserveString extends TestCase {
public String RightShift(String s, int K) {
int length = s.length(); // 获取字符串长度
char c[] = new char[s.length()]; // 获取字符串数组
for (int i = 0; i < s.length(); i++) {
c[i] = s.charAt(i);
}
while (K > 0) { // 一个字符一个字符移动
K--;
char t = c[length - 1];
for (int i = length - 1; i > 0; i--)
c[i] = c[i - 1];
c[0] = t;
}
return new String(c);
} public void test() {
String s = "1234abcd";
System.out.println("翻转以后的字符串为" + RightShift(s, 4));
}
}
虽然这个算法可以实现数组的循环右移,但是算法复杂度为O(K * N),不符合题目的要求,要继续探索。
解法一改进:大家开始可能会有这样的潜在假设,K<N。事实上,很多时候也的确是这样的。但严格来说,我们不能用这样的“惯性思维”来思考问题。尤其在编程的时候,全面地考虑问题是很重要的,K可能是一个远大于N的整数,在这个时候,上面的解法是需要改进的。仔细观察循环右移的特点,不难发现:每个元素右移N位后都会回到自己的位置上。因此,如果K > N,右移K-N之后的数组序列跟右移K位的结果是一样的,进而可得出一条通用的规律:
右移K位之后的情形,跟右移K’= K % N位之后的情形一样,
import junit.framework.TestCase;
public class ReserveString extends TestCase {
public String RightShift(String s, int K) {
int length=s.length(); //获取字符串长度
K%=length; //右移K位之后的情形,跟右移K’= K % N位之后的情形一样,
char c[] = new char[s.length()]; //获取字符串数组
for (int i = 0; i < s.length(); i++) {
c[i] = s.charAt(i);
}
while (K > 0) { //一个字符一个字符移动
K--;
char t = c[length - 1];
for (int i = length - 1; i > 0; i--)
c[i] = c[i - 1];
c[0] = t;
}
return new String(c);
}
public void test() {
String s = "1234abcd";
System.out.println("翻转以后的字符串为"+RightShift(s,43333333));
}
}
可见,增加考虑循环右移的特点之后,算法复杂度降为O(N^2),这跟K无关,与题目的要求又接近了一步。但时间复杂度还不够低,接下来让我们继续挖掘循环右移前后,数组之间的关联。
解法二:三次翻转算法
假设原数组序列为abcd1234,要求变换成的数组序列为1234abcd,即循环右移了4位。比较之后,不难看出,其中有两段的顺序是不变的:1234和abcd,可把这两段看成两个整体。右移K位的过程就是把数组的两部分交换一下。
变换的过程通过以下步骤完成:
逆序排列abcd:abcd1234 → dcba1234;
逆序排列1234:dcba1234 → dcba4321;
全部逆序:dcba4321 → 1234abcd。
public void Reverse( char arr[], int b, int e)
{
for(; b < e; b++, e--)
{
char temp = arr[e];
arr[e] = arr[b];
arr[b] = temp;
}
}
public String RightShift_Three(String s, int K)
{ int N=s.length();
K %= N;
char c[] = new char[s.length()]; //获取字符串数组
for (int i = 0; i < s.length(); i++) {
c[i] = s.charAt(i);
}
Reverse(c, 0, N-K-1);
Reverse(c, N - K, N - 1);
Reverse(c, 0, N - 1);
return new String(c) ;
}
这样,我们就可以在线性时间内实现右移操作了。
稍微总结下:
1、第一个想法 ,是一个字符一个字符的右移,所以,复杂度为O(N*K)
2、后来,它改进了,通过这条规律:右移K位之后的情形,跟右移K’= K % N位之后的情形一样
复杂度为O(N^2)
3、直到最后,它才提出三次翻转的算法,得到线性复杂度。