假设在 n 进制下,下面的等式成立,n 的值为( ) 567 * 456 = 150216;
答案解析:18
567 * 456 = (5n^2+6n+7)*(4n^2+5n+6)=20n^4+49n^3+88n^2+71n+42 ......(1)
150216 = n^5+5n^4+2n^2+n+6 ......(2)
(1)式对n取模 = 42 mod n ......(3)
(2)式对n取模 = 6 ......(4) 【小白解析:(2)式对n取模应为6 mod n,但567*456 = 150216;式子中含有7,即n>=7,所以6 mod n = 6】
综合(3),(4)式得:42 mod n = 6 且 6<n<42【小白解析:n>6上面已解析,有42 mod n = 6可得n不能大于42,否则42 mod n = 42】
由于n皆为正整数,这里可以由42 mod n = 6 简单得出n可能的值为9,12,18,36 ......(5)
此时结果集不多,不嫌麻烦也可以直接带入多项式。或者利用以下等式
//[x]表示对x取整
[(1)/n] mod n = [(2)/n] mod n
=> [71+42/n] mod n = 1 ......(6)【小白解释:[(2)/n] mod n = [1+6/n] mod n 由于n>6,所以6/n<1,即[1+6/n] mod n = 1 mod n = 1】
把(5)的解代入(6),检验可得n=18.