假设在 n 进制下,下面的等式成立,n 的值为( );567*456 = 150216

题目摘自算法爱好者微信号

假设在 n 进制下,下面的等式成立,n 的值为( ) 567 * 456 = 150216;

答案解析:18

567 * 456 = (5n^2+6n+7)*(4n^2+5n+6)=20n^4+49n^3+88n^2+71n+42 ......(1)

150216 = n^5+5n^4+2n^2+n+6 ......(2)

(1)式对n取模 = 42 mod n ......(3)

(2)式对n取模 = 6 ......(4) 【小白解析:(2)式对n取模应为6 mod n,但567*456 = 150216;式子中含有7,即n>=7,所以6 mod n = 6】

综合(3),(4)式得:42 mod n = 6 且 6<n<42【小白解析:n>6上面已解析,有42 mod n = 6可得n不能大于42,否则42 mod n = 42】

由于n皆为正整数,这里可以由42 mod n = 6 简单得出n可能的值为9,12,18,36 ......(5)

此时结果集不多,不嫌麻烦也可以直接带入多项式。或者利用以下等式

//[x]表示对x取整

[(1)/n] mod n = [(2)/n] mod n

=> [71+42/n] mod n = 1 ......(6)【小白解释:[(2)/n] mod n = [1+6/n] mod n 由于n>6,所以6/n<1,即[1+6/n] mod n = 1 mod n = 1】

把(5)的解代入(6),检验可得n=18.

转载于:https://my.oschina.net/wenjiachengy/blog/751659

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值