陶哲轩实分析(上)9.10及习题-Analysis I 9.10

博客详细讨论了实分析中极限在无穷处的概念,通过Exercise 9.10.1阐述了如何从正无穷方向延拓极限定义。内容涉及证明当数列在正无穷时的极限存在性及其相互推导。
摘要由CSDN通过智能技术生成

limits at infinity, 也是很短的一节,但其事实上起到了将极限定义从R延拓到R*的作用.

Exercise 9.10.1

First suppose lim ⁡ n → + ∞ ; n ∈ N a n = L \lim_{n→+∞;n∈\mathbf N}a_n=L limn+;nNan=L, then ∀ ϵ > 0 , ∃ M > 0 ∀ϵ>0,∃M>0 ϵ>0,M>0 s.t.
∣ a n − L ∣ < ϵ , ∀ n ∈ N , n > M |a_n-L|<ϵ,\quad ∀n∈\mathbf N,n>M anL<ϵ,nN,n>M
We let N = [ M ] + 1 > M N=[M]+1>M N=[M]+1>M, then if n > N n>N n>N, we shall have ∣ a n − L ∣ < ϵ |a_n-L|<ϵ anL<ϵ, this means lim ⁡ n → ∞ a n = L \lim_{n→∞}a_n=L limnan=L.
Conversely, suppose lim ⁡ n → ∞ a n = L \lim_{n→∞}a_n=L limnan=L, then ∀ ϵ > 0 , ∃ N ∈ N , N > 0 ∀ϵ>0,∃N∈\mathbf N,N>0 ϵ>0,NN,N>0 s.t.
∣ a n − L ∣ < ϵ , ∀ n ∈ N , n > N |a_n-L|<ϵ,\quad ∀n∈\mathbf N,n>N anL<ϵ,nN,n>N
We choose M = N M=N M=N in Definition 9.10.3, then we can see lim ⁡ n → + ∞ ; n ∈ N a n = L \lim_{n→+∞;n∈\mathbf N}a_n=L limn+;nNan=L.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值