1. Problem Description
You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.
Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.
For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.
Nim博弈,给n个石头,每次你可以取走1~3个,没子可取的人输。
先手若赢,返回1,;先手败,返回0.
2. My solution
Nim博弈公式:
N个石子,每次取得上限为m,则n%(m+1)==0时先手输,反之后手输。
class Solution {
public:
bool canWinNim(int n) {
return n%4==0?0:1;
}
};
本文介绍了一种经典的博弈游戏——Nim游戏,并提供了一个简洁的解决方案。通过分析Nim游戏的数学原理,得出N个石子时,每次取1到3个石子的情况下,先手玩家获胜的条件。

被折叠的 条评论
为什么被折叠?



