Leetcode - String - 292. Nim Game (裸Bash博弈)

本文介绍了一种经典的博弈游戏——Nim游戏,并提供了一个简洁的解决方案。通过分析Nim游戏的数学原理,得出N个石子时,每次取1到3个石子的情况下,先手玩家获胜的条件。

1. Problem Description

You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.

 

Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.

 

For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.

 

Nim博弈,给n个石头,每次你可以取走1~3个,没子可取的人输。

先手若赢,返回1,;先手败,返回0.

 

2. My solution

Nim博弈公式:

N个石子,每次取得上限为m,则n%m+1==0时先手输,反之后手输。

 

class Solution {
public:
    bool canWinNim(int n) {
         return n%4==0?0:1;
    }
};

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值