机器学习
主要介绍机器学习里的算法
大数据同盟会
大数据同盟会致力传播大数据技术,帮助更多需要帮助的人,如果您也感兴趣,请扫描下方二维码 ,加入我们吧
展开
-
机器学习之逻辑回归算法
逻辑回归:是一个分类算法,它可以输出一个分类结果,同时输出分为此类的概率。 1 根据业务理解,个人经验,框选大量的候选特征因素; 2 再用统计学在样本中求因素跟结论之间的相关度大小,来进行筛选。 流失概率风险预测特征相关度 package cn.doitedu.ml.loss import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.linalg import org.apache.spark.ml.linalg.Vectors原创 2021-11-21 16:13:48 · 3134 阅读 · 0 评论 -
机器学习之线性回归算法
线性回归:通过 用户流失概率预测:原创 2021-11-14 21:56:37 · 2113 阅读 · 0 评论 -
机器学习之贝叶斯算法
机器学习算法,就是基于大量经验数据对某个问题进行预测的算法; 1、机器学习分类 从训练特点,可以分为监督学习、无监督学习、半监督学习; 从解决问题,可以分为分类算法,聚类算法,回归分析算法,推荐算法; 2、数学基础 向量: 就是一串数字,代表现实中某个事物的一系列特征和特征值 相似度: 用欧几里得距离来衡量相似度: 用余弦相似度衡量: 概率入门: 联合概率 P(A^B) :多件事情都发生的可能性! 条件概率 P(A | B) = P(A^B)/ P(B) : B条件下A发生的概率 贝叶斯公式 P(B原创 2021-09-07 20:40:14 · 2987 阅读 · 0 评论
分享