立方体解剖

立方体可分为ñ子多维数据集仅用于 n = 1的,8,15,20,22,27,29,34,36,38,39,41,43,45,46,和N> = 48(OEIS A014544 ; Hadwiger 1946;斯科特1947;加德纳1992年,第297页)。这个序列为所谓的Hadwiger问题提供了解决方案,该问题要求最大数量的子立方体(不一定是不同的),立方体不能通过平面切割进行划分,并得到答案47(Gardner 1992,pp.297- 298)。

如果米并且ñ在序列中,那么M + N-1,因为 - 在ñ-dissection中分割一个立方体米给出了(M + N-1)-dissection。由于对应于等式的解剖,数字1,8,20,38,49,51,54在序列中

1 ^ 3=1 ^ 3
(1)
2 ^ 3=8·1 ^ 3
(2)
3 ^ 3=2 ^ 3 + 19·1 ^ 3
(3)
4 ^ 3=3 ^ 3 + 37·1 ^ 3
(4)
6 ^ 3=4·3 ^ 3 + 9·2 ^ 3 + 36·1 ^ 3
(5)
6 ^ 3=5·3 ^ 3 + 5·2 ^ 3 + 41·1 ^ 3
(6)
8 ^ 3=6·4 ^ 3 + 2·3 ^ 3 + 4·2 ^ 3 + 42·1 ^ 3。
(7)

结合这些事实给出序列中的剩余项和所有数字> 47,并且已经表明没有其他数字出现。

不可能将立方体切割成各种尺寸的子管(Gardner 1961,p.208; Gardner 1992,p.298)。

Soma1Soma2Soma3Soma4
Soma5Soma6Soma7 

用于构造3×3×3 称为Soma立方体的立方体解剖的七个部件是一个3-多立方体和六个4-多立方体 (1·3 + 6·4 = 27),如上所示。

Steinhaus1Steinhaus2Steinhaus3
Steinhaus4Steinhaus5Steinhaus6

3×3×3由Steinhaus(1999)引起的 另一个立方体解剖使用三个5- 多晶体和三个4- 多晶体3·5 + 3·4 = 27),如上所示。有两种解决方案。

可以将1×3 矩形 切割成两个相同的片,当折叠和连接时将形成立方体(不重叠)。实际上, C。L. Baker(Hunter和Madachy,1975)发现了无数解决这个问题的方法。

Lonke(2000)已被认为是数F(J,K,n)的Ĵ随机的维面ķ的维的中央部ñ-cube B_infty ^ N = [ -  1,1] ^ N,并给出了特殊结果

f(0,k,n)= 2 ^ k(n; k)sqrt((2k)/ pi)int_0 ^ inftye ^( -  kt ^ 2/2)gamma_(nk)(tB_infty ^(nk))dt,
(8)

其中gamma_(NK)(NK)二维高斯概率测度。

转载于:https://my.oschina.net/lanhaikeji/blog/3086133

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值