这一节中将提供各种螺旋曲面的生成方法.
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.
我之前写过生成圆环的C++程序,代码发布在螺旋面(Spire)图形的生成算法
(1)正螺旋面
正螺旋面就是让一条直线l的初始位置与x轴重合,然后让直线l一边绕z轴作匀速转动,一边沿z轴方向作匀速运动,则直线在这两种运动的合成下扫出的曲面就是正螺旋面。
显然正螺旋面可以看做是由直线形成的,即它是一个直纹面。
为什么叫正,难道还有反吗?.看其公式,就是将圆向上拉了拉又多转了几圈.
vertices = D1:32 D2:360
u = from 0 to 3 D1
v = from 0 to (8*PI) D2
x = u*cos(v)
y = v*0.5
z = u*sin(v)
(2)正螺旋面随机(helicoiddroit)
加上随机参数的正螺旋面,并向外拉伸了下.
vertices = D1:32 D2:360
u = from 0 to 3 D1
v = from 0 to (8*PI) D2
a = rand2(0.1, 1)
b = rand2(1, 5)
x = (b + u)*cos(v)
y = v*a
z = (b + u)*sin(v)
(3)阿基米德螺旋面
看其公式,阿基米德螺旋面就是正螺旋面变化了下高度参数
#http://</