总结:Flink

一、为什么要使用分布式计算框架?

对于不涉及到IO的计算,分布式计算相当于多个人计算,如10台计机器计算速度是1台机器计算速度的10倍。而分布式计算框架能充分发挥分布式计算优势。

 

二、Flink优秀设计理念之强一致性(灾备)

Flink是如何做到在Checkpoint恢复过程中没有任何数据的丢失和数据的冗余?来保证精准计算的?

这个设计理念非常好,很适合做灾备。每个拓扑节点会生成一次快照,故障时候选择最新快照即可。比如拓扑节点A,B,C,在B拓扑节点出故障(B还未来得及生成快照),则在机器重启后取A节点处理即可。

这其中原因是Flink利用了一套非常经典的Chandy-Lamport算法,它的核心思想是把这个流计算看成一个流式的拓扑,定期从这个拓扑的头部Source点开始插入特殊的Barries,从上游开始不断的向下游广播这个Barries。每一个节点收到所有的Barries,会将State做一次Snapshot,当每个节点都做完Snapshot之后,整个拓扑就算完整的做完了一次Checkpoint。接下来不管出现任何故障,都会从最近的Checkpoint进行恢复。

转载于:https://my.oschina.net/weiweiblog/blog/3095225

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值