不动的大图书馆
题目描述
在幻想乡,帕秋莉•诺蕾姬是以宅在图书馆闻名的魔法使。这一天帕秋莉又在考虑如何加强魔法咒语的威力。帕秋莉的魔法咒语是一个仅有大写字母组成的字符串,我们考虑从’A’到’Z’分别表示0到25的数字,于是这个魔法咒语就可以看作一个26进制数。帕秋莉通过研究发现,如果一个魔法咒语所代表的数能够整除10进制数M的话,就能够发挥最大的威力。若当前的魔法咒语并不能整除M,帕秋莉只会将其中两个字符的位置交换,尽量让它能够被M整除,当然由于某些咒语比较特殊,无论怎么改变都不能达到这个目的。请你计算出她能否只交换两个字符就让当前咒语被M整除。(首位的’A’为前导0) 第1行:1个字符串,长度不超过L。 第2行:1个正整数,M 第1行:用空格隔开的2个整数,输出时先输位置靠前的那个。 如果存在多种交换方法,输出字典序最小的,比如1 3和1 5都可以达到目的,就输出1 3;1 3和2 4都行时也输出1 3。注意字符串下标从左到右依次为1到L开始。如果初始魔法咒语已经能够整除M,输出”0 0”;若无论如何也不能到达目的输出”-1 -1”。 PATCHOULI 16 4 9 对于30%的数据:1 <= L <= 10, 1 <= M <= 100 对于50%的数据:除前面30%外,1 <= L <= 500, M = 5或25或26 对于100%的数据:1 <= L <= 2,000, 1 <= M <= 200,000
输入描述
第1行:1个字符串,长度不超过L。
第2行:1个正整数,M
输出描述
第1行:用空格隔开的2个整数,输出时先输位置靠前的那个。 如果存在多种交换方法,输出字典序最小的,比如1 3和1 5都可以达到目的,就输出1 3;1 3和2 4都行时也输出1 3。注意字符串下标从左到右依次为1到L开始。如果初始魔法咒语已经能够整除M,输出”00”;若无论如何也不能到达目的输出”-1-1”。
样例输入
PATCHOULI
16
样例输出
4 9
数据范围
对于30%的数据:1 <= L <= 10, 1 <= M <= 100 对于50%的数据:除前面30%外,1 <= L <= 500, M = 5或25或26 对于100%的数据:1 <= L <= 2,000, 1 <= M <= 200,000
乍一眼看没什么想法,先打了个目标80的骗分……?暴力……?
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXL = 2000 + 5;
char L[MAXL];
int l;
int M;
int get_L()
{
int x = 0;
for(int i = 1;i <= l;i ++)
x *= 26,x += L[i] - 'A',x %= M;
return x % M;
}
void xfs()
{
if(!get_L())
{
puts("0 0");
exit(0);
}
for(int i = 1;i < l;i ++)
{
for(int j = i + 1;j <= l;j ++)
{
swap(L[i],L[j]);
if(!get_L())
{
printf("%d %d\n",i,j);
exit(0);
}
swap(L[i],L[j]);
}
}
puts("-1 -1");
return;
}
int main()
{
scanf("%s %d",L + 1,&M);
l = strlen(L+1);
if(M == 26)
{
if(L[l] == 'A')
{
puts("0 0");
return 0;
}
for(int i = 1;i <= l;i ++)
if(L[i] == 'A')
{
printf("%d %d\n",i,l);
return 0;
}
puts("-1 -1");
return 0;
}
if(M == 5)
{
if(L[l] - 'A' % 5 == 0)
{
puts("0 0");
return 0;
}
for(int i = 1;i <= l;i ++)
if(L[i] - 'A' % 5 == 0)
{
printf("%d %d\n",i,l);
return 0;
}
puts("-1 -1");
return 0;
}
if(M == 25)
{
int ans1 = 10000,ans2 = 10000;
if(L[l-1] - 'A' == 0 || L[l-1] - 'A' == 2 || L[l-1] - 'A' == 5 || L[l-1] - 'A' == 7)
if(L[l] - 'A' == 5 || L - 'A' == 0)
{
puts("0 0");
return 0;
}
if(L[l] - 'A' == 5 || L[l] - 'A' == 0)
{
for(int i = 1;i < l;i ++)
if(L[i] - 'A' == 0 || L[i] - 'A' == 2 || L[i] - 'A' == 5 || L[i] - 'A' == 7)
{
ans1 = i;
break;
}
}
if(L[l-1] - 'A' == 0 || L[l-1] - 'A' == 2 || L[l-1] - 'A' == 5 || L[l-1] - 'A' == 7)
{
for(int i = 1;i < l-1;i ++)
if(L[i] - 'A' == 0 || L[i] - 'A' == 5)
{
ans2 = i;
break;
}
}
if(ans1 < ans2)
{
printf("%d %d\n",ans1,l-1);
return 0;
}
if(ans2 < ans1)
{
printf("%d %d\n",ans2,l);
return 0;
}
puts("-1 -1");
return 0;
}
xfs();
return 0;
}
结果一个根本不对的东西在codevs上水了一大发……(85!!!)
关于100分算法
在不取模,十进制的时候,怎样交换第i位和第j位……?
设原数按位存在数组num里……为啥要这样存
x -= 10 ^ (i-1) * num[i];
x -= 10 ^ (j-1) * num[i];
x += 10 ^ (i-1) * num[j];
x += 10 ^ (j-1) * num[i];
然后,26进制可以类比
所以就解决啦……
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXL = 2000 + 5;
char L[MAXL];
int M;
int l,k;
int v[MAXL];
void init()
{
v[l] = 1;
for(int i = l - 1;i > 0;i --)
{
v[i] = v[i + 1] * 26;
v[i] %= M;
}
k = 0;
for(int i = 1;i <= l;i ++)
k *= 26,k += L[i] - 'A',k %= M;
return;
}
int _swap_(int i,int j)
{
int sum = k;
sum -= (v[i] * (L[i] - 'A')) % M;
sum -= (v[j] * (L[j] - 'A')) % M;
sum += (v[i] * (L[j] - 'A')) % M;sum %= M;
sum += (v[j] * (L[i] - 'A')) % M;sum %= M;
return sum;
}
void xfs()
{
if(k % M == 0)
{
puts("0 0");
exit(0);
}
for(int i = 1;i < l;i ++)
for(int j = i + 1;j <= l;j ++)
{
if(_swap_(i,j) % M == 0)
{
printf("%d %d\n",i,j);
exit(0);
}
}
puts("-1 -1");
exit(0);
}
int main()
{
scanf("%s %d",L + 1,&M);
l = strlen(L + 1);
init();
xfs();
return 0;
}