给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1:
输入:[1,2,3,4,5,6,7]
和 k = 3 输出:[5,6,7,1,2,3,4]
解释: 向右旋转 1 步:[7,1,2,3,4,5,6]
向右旋转 2 步:[6,7,1,2,3,4,5]
向右旋转 3 步:[5,6,7,1,2,3,4]
示例 2:
输入: [-1,-100,3,99]
和 k = 2
输出: [3,99,-1,-100]
解释:
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]
说明:
- 尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
- 要求使用空间复杂度为 O(1) 的原地算法。
import java.util.Arrays;
class Solution {
/**
* 双重循环
* 时间复杂度:O(kn)
* 空间复杂度:O(1)
*/
public void rotate_1(int[] nums, int k) {
int n = nums.length;
k %= n;
for (int i = 0; i < k; i++) {
int temp = nums[n - 1];
for (int j = n - 1; j > 0; j--) {
nums[j] = nums[j - 1];
}
nums[0] = temp;
}
}
/**
* 翻转
* 时间复杂度:O(n)
* 空间复杂度:O(1)
*/
public void rotate_2(int[] nums, int k) {
int n = nums.length;
k %= n;
reverse(nums, 0, n - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, n - 1);
}
private void reverse(int[] nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start++] = nums[end];
nums[end--] = temp;
}
}
/**
* 循环交换
* 时间复杂度:O(n^2/k)
* 空间复杂度:O(1)
*/
public void rotate_3(int[] nums, int k) {
int n = nums.length;
k %= n;
// 第一次交换完毕后,前 k 位数字位置正确,后 n-k 位数字中最后 k 位数字顺序错误,继续交换
for (int start = 0; start < nums.length && k != 0; n -= k, start += k, k %= n) {
for (int i = 0; i < k; i++) {
swap(nums, start + i, nums.length - k + i);
}
}
}
/**
* 递归交换
* 时间复杂度:O(n^2/k)
* 空间复杂度:O(1)
*/
public void rotate(int[] nums, int k) {
// 原理同上
recursiveSwap(nums, k, 0, nums.length);
}
private void recursiveSwap(int[] nums, int k, int start, int length) {
k %= length;
if (k != 0) {
for (int i = 0; i < k; i++) {
swap(nums, start + i, nums.length - k + i);
}
recursiveSwap(nums, k, start + k, length - k);
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
摘自@Angus-Liu