FL Studio教程之排列和编辑歌曲

在学习如何使用FL Studio排列和编辑歌曲之前,我们先来看看FL Studio的主窗口是怎样的:

FL Studio的界面由众多窗口组成,这些窗口大多都可以移动(或重叠)、重新调整大小、缩放和切换, 因此如果看不到某个窗口,可以使用快捷键工具栏(或以下括号里显示的功能键)来打开它。FL Studio音乐创建涉及到的主窗口有:通道机架(F6),钢琴窗(F7),混音器(F9)和播放列表(F5),浏览器(F6)主要用于访问音频文件、插件和预设。

 

注意:如果需要将所有窗口的位置重新设置为默认位置,可以使用Ctrl+Shift+H或者查看‘视图’菜单选项。

排列&编辑

播放列表按顺序排好制作最终歌曲需要播放的项目的所有元素,播放列表窗口里有一堆多功能‘剪辑轨道’,操控着模式剪辑,音频剪辑和自动化剪辑。不像其他大多数音序器,播放列表轨道不受任何乐器、录音或剪辑类型限制,你甚至可以将剪辑类型放在任何位置,包括叠加到其他剪辑上。

 

排列—若要使用播放列表,软件版本至少是Fruity edition(基础版)。

使用‘Producer edition’(进阶版)排列:

利用播放列表控制三种类型的数据,使用剪辑源选择器来选择:

• 模式剪辑(音符)—模式通常控制音符数据来排序插件乐器,尽管它们也可以包含自动化活动数据。

•音频剪辑(音频/loops/采样)—如果音频剪辑已经存在,可以从‘剪辑源选择器’中选中它,或者也可以从浏览器将采样/loop/音频文件直接拖到播放列表中,通过F10 > 文件设置对话框将自己的文件夹添加到浏览器。

•自动化剪辑(控制移动)—自动化剪辑主要移动FL Studio界面和插件上的旋扭和控制,若要创建自动化剪辑,只需右击某个界面控制,然后选择‘创建自动化剪辑’。

使用‘Fruity Edition’(基础版)排列:

只能访问模式剪辑类型,从步进序列或钢琴窗以及活动自动化控制音符数据,模式剪辑的长度将由其里面的数据的长度决定,而你不受限制。

•音频—由于音频剪辑在Fruity Edition版中不可用,要想插入轨道长度音频,可以从模式里触动采样通道,使用钢琴窗控制采样的持续时间。

选择剪辑还有另一个方法,就是右击播放列表剪辑聚焦选择器的某一个标签,来显示想要的剪辑种类。

选择好剪辑之后,接着选择绘制(笔)或绘画(笔刷)模式,左击播放列表的空白区域,水平拖动时,拖进笔刷模式将会重复剪辑。

位置放好之后,可以通过在剪辑顶部运行的名称栏(水平或垂直)点击+拖动模式剪辑,剪辑移动的方式取决于播放列表的对齐设置和缩放级别。

播放列表剪辑轨道可以命名、上色、上/下移动或静音,在每个轨道的开始处右击名称区域即可访问这些功能。

可以将模式剪辑放到任一剪辑轨道里,或者同一轨道中任何数量的不同剪辑,剪辑轨道只是针对任一或所有数据类型的通用控制通道。

回放—要确保处于歌曲模式中,这样模式才能从播放列表播放,负责,将只播放选定的模式。通道窗口和播放列表顶部有播放按钮,因此你也可以启动模式或播放列表回放。

FL Studio不局限于基于模式的排序,你也可以将从未用过的模式剪辑输入到播放列表,并播放歌曲长度数据(模式),由此可见,FL Studio既可以是基于轨道的音序器,也可以是基于模式的音序器,亦或两者的组合。

更多有关FL Studio的内容,欢迎关注,安装最新版本,体验这款强大的音乐编曲软件

转载于:https://my.oschina.net/u/3756683/blog/1623534

identity 身份认证 购VIP最低享 7 折! triangle vip 30元优惠券将在 04:24:36 后过期 去使用 triangle 数据可视化是将复杂的数据集通过图表、图像等视觉元素进行呈现,以便于人们更容易地理解解读数据。在“数据可视化期末课设~学生成绩可视化分析.zip”这个压缩包中,我们可以看到一系列与数据可视化相关的资源,包括Jupyter代码、HTML图片、答辩PPT以及Word文档,这些内容涵盖了数据可视化的基础到高级应用,适合于完成一个全面的期末课程设计项目。 Jupyter代码是使用Python编程语言进行数据处理可视化的主要工具。在这个项目中,学生可能使用了pandas库来加载清洗数据,可能涉及到的数据处理步骤包括去除重复值、处理缺失值以及数据类型转换等。接着,他们可能使用matplotlib或seaborn库来创建各种图表,如直方图、散点图、箱线图等,以展示学生成绩的分布、对比趋势。此外,更高级的可视化库如plotly或bokeh可能也被用来实现交互式图表,增加用户对数据的理解深度。 保存的HTML图片是Jupyter Notebook的输出结果,它展示了代码运行后的可视化效果。这些图片可以直观地揭示学生成绩的统计特征,例如平均分、标准差、最高分最低分等。通过颜色编码或者图例,我们可以识别出不同科目或者不同班级的表现,帮助分析教学质量学生学习情况。 答辩PPT则可能包含项目的概述、目的、方法、结果结论。在PPT中,学生可能会详细阐述他们选择特定可视化方法的理由,如何解读图表,以及从数据中得出的洞察。此外,PPT的制作也是展示其表达沟通能力的重要部分,要求清晰、有逻辑地组织信息。 Word文档可能是项目报告,详细记录了整个过程,包括数据来源、预处理步骤、使用的可视化技术、分析结果以及可能遇到的问题解决方案。报告中的数据分析部分会详细解释图表背后的含义,例如通过对比不同学科的分数分布,找出哪些科目可能存在困难,或者分析成绩与特定因素(如性别、年级等)的关系。 这个压缩包提供了完整的数据可视化项目实例,涉及了数据获取、处理、可视化解释的一系列步骤,对于学习掌握数据可视化技能非常有价值。通过这样的练习,学生不仅能够提高编程技巧,还能培养数据驱动思维问题解决能力,为未来从事数据分析或相关领域的工作打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值