最优化学习笔记(八)——共轭方向法

     从这节开始,将学习共轭方向法的相关内容,本篇先做一个简短的开篇。共轭方向法的计算效率不如之前的牛顿法,但是也优于最速下降法。它有以下优势:

  1. 对于n维二次型问题,能够在n步之内得到结果;
  2. 作为共轭方向的典型代表,共轭梯度法不需要计算hessian矩阵;
  3. 不需要存储n×n矩阵,也不需要对其进行求逆运算。

     如果Rn中的两个方向d(1)d(2)满足d(1)TQd(2)=0,则他们是关于Q共轭的。由此给出以下的定义:
定义1 Qn×n的对称实矩阵,对于方向d(0)d(1),d(m),如果对于所有ij,有d(i)TQd(j)=0,则称他们是关于Q共轭的。

引理1 Qn×n的对称正定矩阵,如果方向d(0)d(1),d(k)Rn,kn1非零,且是关于Q共轭的,那么它们是线性无关的。

发布了84 篇原创文章 · 获赞 48 · 访问量 23万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览