盒子与球解题报告

题目描述:

Description

现有r个互不相同的盒子和n个互不相同的球,要将这n个球放入r个盒子中,且不允许有空盒子。问有多少种方法?
例如:有2个不同的盒子(分别编为1号和2号)和3个不同的球(分别编为1、2、3号),则有6种不同的方法:

Input

两个整数,n和r,中间用空格分隔。(0≤n, r≤10)

Output

仅一行,一个整数(保证在长整型范围内)。表示n个球放入r个盒子的方法。

Sample Input

3 2

Sample Output

6
思路:一道数学问题,与求包含n个元素的集合划分为正好k个非空不相交子集的方法的数目十分相似,所以用Stirling数来解决,
递推公式为:
S(n,k)=0; (n<k||k=0) 
S(n,n) = S(n,1) = 1,
S(n,k) = S(n-1,k-1) + kS(n-1,k).
当然这道题还有一点不同之处就是每个盒子又有区别,所以到最后求出Stirling数后,还要乘上k(盒子数)的全排列。
以下为记忆化搜索和递推两种思路的源代码:
记忆化搜索源程序:

#include <iostream>
#include <cstdio>
using namespace std;
int n,k,sum=0;
void init()
{
  scanf("%d %d",&n,&k);
}
int work(int n,int k)
{
  if(k>n)
	return(0);
  else if(k==1||k==n)
	return(1);
  else return(work(n-1,k-1)+work(n-1,k)*k);
}
int jiecheng(int k)
{
  int i;
  int zong=1;
  for(i=k;i>0;i--)
    zong*=i;
  return(zong);
}
void solve()
{
  if(k==1)
	  printf("%d",1);
  else if(k==n)
    printf("%d",jiecheng(k));
  else if(k>n)
    printf("%d",0);
  else if(k==0)
    printf("%d",0); //中间加了好多特殊情况判断,感觉有点没有必要~~
  else   
  {
	  sum=work(n,k);
    printf("%d",sum*jiecheng(k));
  }
}
int main()
{
  init();
  solve();
}
 
递推源代码:
#include <iostream>
#include <cstdio>
using namespace std;
int a[11][11];
int n,k;
void init()
{
  freopen("1257.in","r",stdin);
  scanf("%d %d",&n,&k);
  a[0][0]=1;
}
int jiecheng(int k)
{
  int i;
  int zong=1;
  for(i=k;i>0;i--)
    zong*=i;
  return(zong);
}
void solve()
{
  int i,j;
  for(i=1;i<=k;i++)
    for(j=1;j<=n;j++)
      a[j][i]=a[j-1][i-1]+(a[j-1][i]*i);
  freopen("1257.out","w",stdout);
  printf("%d",a[n][k]*jiecheng(k));
}
int main()
{
  init();
  solve(); 
}
反思:没有什么注释的,只要细心即可。

斯特林数

斯特林数出现在许多组合枚举问题中. 对第一类斯特林数 StirlingS1[n,m], 给出恰包含 m 个圈的 n 个元素 的排列数目. 斯特林数满足母函数关系 . 注意某些 的定义与 Mathematica 中的不同,差别在于因子 . 第二类斯特林数 StirlingS2[n,m]给出把 n 个可区分小球分配到m个不可区分的的盒子,且盒子没有空盒子的方法的数量. 它们满足关系 . 划分函数 PartitionsP[n]给出把整数 n 写为正整数的和,不考虑顺序的方法的数目. PartitionsQ[n]给出把整数 n 写为正整数的和,并且和中的整数是互不相同的 写法的数目
设S(p,k)是斯特林数
S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。
S(p,k)的递推公式是:
 S(p,k) = k*S(p-1,k) + S(p-1,k-1) ,1<= k <=p-1
边界条件:
S(p,p) = 1 ,p>=0
S(p,0) = 0 ,p>=1
递推关系的说明:考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。
第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。引用Brualdi《组合数学》里的一段注释 “对于熟悉线性代数的读者,解释如下:具有(比如)实系数,最多为p次的那些各项式形成一个p+1维的向量空间。组1,n,n^2,...。n^p和组 A(n, 0),A(n,1),A(n,2),... ,A(n,p)都是该空间的基。第一类Stirling数和第二类Stirling数告诉我们如何用其中的一组基表示另一组基。”

转载于:https://my.oschina.net/u/1011659/blog/159872

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值