使用Preprocessor预处理器语句对外部表进行介入处理

本文介绍Oracle 11g R2中引入的Preprocessor特性,该特性允许在数据进入数据库前进行处理,例如解压缩或解密操作。文章通过实例演示如何配置预处理器,并创建能够读取压缩文件的外部表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Oracle外部表External Table是一项比较传统方便的工具。使用独立在文件系统中的文本文件为载体,通过Directory对象建立起虚拟数据表(External Table)和数据文件数据之间的关系。同时,通过直接加载等技术提高数据导入过程速度,让用户使用起来可以得到同数据库表相同的查询检索效率。

 

对于External Table技术,Oracle在每个新版本中都在不断的丰富提升,一些更加实用的特性被不断加入到系统中。在Oracle 11gR2(在10gR2较晚版本中最开始出现)版本中,正式推出了Preprocessor预处理器语句,在操作系统层面提供了对数据进入数据库前的程序介入接口。

 

本篇主要介绍Preprocessor语法的使用和应用场景,并且通过案例进行说明。

 

1、语法和内容

 

外部表External Table的核心在于定义数据表时候的描述参数,Preprocessor特性实际上就是外部表定义过程中的一个参数项目。从语法结构上,如下图所示:

 

bb

 

使用Preprocessor参数有配套参数项目,用于详细指定出究竟处理文本文件的函数是谁?在哪?directory_spec参数是可选项目,如果处理函数位置和默认Directory不同,就是用这个来指定。File_spec就是指定的函数处理程序对象。

 

从系统部署角度看,处理程序(加密或者压缩)和数据放在相同的位置显然不是一个好主意,同时也不是规范安全的做法。

 

注意:如果程序执行需要参数设置,需要写在shell或者batch脚本中指定。

 

2、实验背景环境

 

下面通过一个案例来进行说明。案例比较简单:受磁盘空间大小的限制,在文件系统中保存的外部表文件需要压缩保存,但是在读取的时候,需要即时进行解压处理。这种时候,就需要使用Proprocessor进行方便的程序处理。

 

我们选择使用Oracle 11g进行测试,具体版本为11.2.0.4

 

 

SQL> select * from v$version;

 

BANNER

--------------------------------------------------------------------------------

Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production

PL/SQL Release 11.2.0.4.0 - Production

CORE    11.2.0.4.0 Production

TNS for Linux: Version 11.2.0.4.0 - Production

NLSRTL Version 11.2.0.4.0 – Production

 

 

在操作系统层面,设置文件存储结构。

 

 

--目录结构准备

[root@localhost /]# mkdir -p /prtest/bin

[root@localhost /]# mkdir -p /prtest/data

[root@localhost /]# ls -l | grep prtest

drwxr-xr-x.   4 oracle oinstall  4096 Oct 13 15:59 prtest

 

 

准备压缩数据,为csv格式文件。

 

 

--数据压缩准备

[oracle@localhost ~]$ cd /prtest/data/

[oracle@localhost data]$ ls -l

total 1264

-rw-r--r--. 1 oracle oinstall 1291480 Oct 13 16:02 tmp001.csv

[oracle@localhost data]$ gzip tmp001.csv

[oracle@localhost data]$ ls -l

total 340

-rw-r--r--. 1 oracle oinstall 346110 Oct 13 16:02 tmp001.csv.gz

 

 

处理程序可以是实际程序,也可以是一个shell或者batch执行脚本。我们在Linux环境下,准备一个简单的解压命令脚本。

 

 

[oracle@localhost data]$ cd /prtest/bin/

[oracle@localhost bin]$ echo '/bin/gunzip -c $1' > uncompress.sh

[oracle@localhost bin]$ ls -l

total 4

-rw-r--r--. 1 oracle oinstall 18 Oct 13 16:05 uncompress.sh

[oracle@localhost bin]$ chmod 755 uncompress.sh

[oracle@localhost bin]$ ls -l

total 4

-rwxr-xr-x. 1 oracle oinstall 18 Oct 13 16:05 uncompress.sh

 

 

从部署结构看,/prtest/bin目录保存执行程序,data目录保存压缩版本数据。

 

3、外部表创建

 

结束了文件系统配置,后面可以进行数据库层面配置。首先,外部表External Table与文件系统接口就是Directory对象。

 

 

SQL> create directory execdir as '/prtest/bin';

Directory created

 

SQL> grant read, write on directory execdir to scott;

Grant succeeded

 

SQL> create directory data_dir as '/prtest/data';

Directory created

 

SQL> grant read, write on directory data_dir to scott;

Grant succeeded

 

SQL> grant execute on directory execdir to scott;

Grant succeeded

 

SQL> grant execute on directory data_dir to scott;

Grant succeeded

 

 

切换到scott用户。

 

 

SQL> show user

User is "scott"

SQL> create table xtab(obj_id number(10), obj_name varchar2(2000), obj_typ varchar2(2000))

  2  organization external

  3  (

  4    type oracle_loader

  5    default directory data_dir

  6    access parameters(

  7      records delimited by newline

  8      preprocessor execdir:'uncompress.sh') –设置处理程序

  9     -- fields (obj_id, obj_name, obj_typ)

 10    location('tmp001.csv.gz')

 11  )

 12  REJECT LIMIT UNLIMITED

 13  parallel 2;

 

Table created

 

 

使用select语句。

 

 

SQL> select count(*) from xtab;

 

  COUNT(*)

----------

     31592

 

SQL> select * from xtab where rownum<5;

 

     OBJ_ID OBJ_NAME             OBJ_TYP

----------- -------------------- ----------

         20 ICOL$                TABLE

         46 I_USER1              INDEX

         28 CON$                 TABLE

         15 UNDO$                TABLE

 

 

读取成功。

 

4、结论

 

Oracle推荐的应用场景看,preprocessor参数能够在两个层面起作用,一个是针对特殊的数据处理场景;另一个是管理职责划分。特殊的数据处理场景,比如压缩或者加密文本文件读取为外部表,透明的进行数据处理。职责划分上,数据使用者、提供者和管理程序之间,借助Preprocessor参数特性可以清晰的分割。

 


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/17203031/viewspace-2126294/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/17203031/viewspace-2126294/

### 关于深度学习预处理器 V2 的功能与实现 尽管当前提供的引用并未直接提及深度学习预处理器的具体细节,但从一般性的知识出发,可以总结如下: #### 功能概述 深度学习中的预处理器通常用于数据清洗、转换以及标准化处理。对于版本 `V2` 的具体实现或功能,可能涉及以下几个方面[^4]: - **增强的数据管道支持**:相比早期版本,V2 可能引入更高效的数据加载机制,例如 TensorFlow 中的 `tf.data` API 或 PyTorch 的 `DataLoader` 改进版。 - **多线程优化**:通过并行化操作提升数据读取速度,减少训练过程中的 I/O 瓶颈。 - **自定义变换能力**:允许开发者轻松集成复杂的图像增广技术或其他特定领域内的数据调整方法。 以下是基于 Python 和常见框架的一个简单示例代码片段展示如何构建这样的预处理流程: ```python import tensorflow as tf def preprocess_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [224, 224]) image /= 255.0 # normalize to [0,1] range return image dataset = tf.data.Dataset.list_files("/path/to/images/*.jpg") dataset = dataset.map(preprocess_image).batch(32) for batch in dataset.take(1): pass # handle the first batch of images... ``` 此脚本展示了基本图片文件路径列创建、解码压缩格式到张量形式转化、尺寸缩放及归一化的全过程。 #### 实现改进点 相较于传统方式,V2 版本可能会着重改善以下几点性能指标: - 减少内存占用. - 提高跨平台兼容性和易用性. 需要注意的是实际项目里还应考虑异常情况下的鲁棒性设计等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值