深拷贝、浅拷贝

浅克隆(shallow copy):新旧对象共享一个地址,改变一个,另一个也会改变(浅拷贝只能拷贝值类型的数据,对于引用类型,只会拷贝引用地址,如果有引用类型,多个拷贝对象会共用同一个引用类型的数据,造成混乱。)

深克隆(deep copy):新旧对象不共享一个地址。

一、数组

1 .concat

2 .slice(0)

3.数组扩展 let […arr1] = arr2

4.一一遍历赋值

function deep(arr1){
    let arr = [];
    for(let i in arr1){
        arr.push(arr1[i]);
    }

    return arr;
}

二、对象

1.对象扩展 let {…arr1} = arr2

2.一一遍历赋值

function deep(obj) {
    let obj1 = {};
    for (let key in obj) {
        obj1[key] = obj[key];
    };
    return obj1;
}

三、数组、对象通用

1.JSON.parse(JSON.stringify(arr))

2.一一遍历

function deepCopy(v) {
    let o = v.constructor === Array ? [] : {};

    for (let i in v) {
        o[i] = typeof v[i] === "Object" ? deepCopy(v[i]) : v[i];
    }

    return o;
}

四、注意

Object.assign({},arr1,arr2) Object.assign 它只对顶层属性做了赋值,完全没有继续做递归之类的把所有下一层的属性做深拷贝。

Object.assign(arr1,arr2) // 浅拷贝。

3.8 女神节记~

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值